cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A328357 Number of inversion sequences of length n avoiding the consecutive patterns 000, 001, 011, 012.

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 36, 117, 804, 4266, 33768, 249144, 2289348, 21353472, 227212824, 2533824900, 30914509212, 398623158096, 5508014798052, 80377645583430, 1242697826967816, 20218588415853480, 346035438765576720, 6206862951272939550, 116518581654518098332
Offset: 0

Views

Author

Juan S. Auli, Oct 13 2019

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers such that 0 <= e_i < i. The term a(n) counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i <= e_{i+1} <= e_{i+2}. Alternatively, we can describe this as the set of inversion sequences of length n avoiding the consecutive patterns 000, 001, 011, 012.

Examples

			The a(4)=4 length 4 inversion sequences avoiding the consecutive patterns 000, 001, 011, 012 are 0100, 0101, 0102, 0103.
The a(5)=6 length 5 inversion sequences are 01010, 01020, 01021, 01030, 01031, 01032.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, x, t) option remember; `if`(n=0, 1, add(
         `if`(t and i<=x, 0, b(n-1, i, i<=x)), i=1..n))
        end:
    a:= n-> b(n, 0, false):
    seq(a(n), n=0..24);  # Alois P. Heinz, Oct 14 2019
  • Mathematica
    b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i <= x, 0, b[n - 1, i, i <= x]], {i, 1, n}]];
    a[n_] :=  b[n, 0, False];
    a /@ Range[0, 24] (* Jean-François Alcover, Feb 25 2020, after Alois P. Heinz *)

Formula

a(n) ~ n! * c * (3^(3/2)/(2*Pi))^n / n^(2*Pi/3^(3/2)), where c = 0.75844492121718325018323312623016463... - Vaclav Kotesovec, Oct 17 2019

Extensions

Terms a(11)..a(16) from Joerg Arndt, Oct 14 2019
a(17)-a(24) from Alois P. Heinz, Oct 14 2019

A328358 Number of inversion sequences of length n avoiding the consecutive patterns 012, 021, 010, 120.

Original entry on oeis.org

1, 1, 2, 4, 10, 30, 100, 376, 1566, 7094, 34751, 182841, 1026167, 6112799, 38489481, 255204077, 1776046697, 12936265145, 98368170749, 779127467795, 6414876317675, 54802126603135, 484967246285755, 4438877330941077, 41963817964950737, 409224941931240185
Offset: 0

Views

Author

Juan S. Auli, Oct 13 2019

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers such that 0 <= e_i < i. The term a(n) counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i < e_{i+1} != e_{i+2}. This is the same as the set of inversion sequences of length n avoiding the consecutive patterns 012, 021, 010, 120.

Examples

			The length 4 inversion sequences avoiding the consecutive patterns 012, 021, 010, 120 are 0000, 0110, 0001, 0011, 0111, 0002, 0112, 0022, 0003, 0113.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, x, t, c) option remember; `if`(n=0, 1, add(`if`(ix, max(0, c-1))), i=1..n))
        end:
    a:= n-> b(n, 0, false, 2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 14 2019
  • Mathematica
    b[n_, x_, t_, c_] := b[n, x, t, c] = If[n == 0, 1, Sum[If[i < x && t && c == 0, 0, b[n - 1, i, i != x, Max[0, c - 1]]], {i, 1, n}]];
    a[n_] := b[n, 0, False, 2];
    a /@ Range[0, 25] (* Jean-François Alcover, Mar 01 2020, after Alois P. Heinz *)

Extensions

a(11)-a(25) from Alois P. Heinz, Oct 14 2019

A328433 Number of inversion sequences of length n avoiding the consecutive patterns 011 and 012.

Original entry on oeis.org

1, 1, 2, 4, 11, 37, 157, 791, 4676, 31490, 238814, 2009074, 18585645, 187366675, 2045016693, 24018394333, 302051731428, 4049206907012, 57642586053512, 868375941780450, 13801973373609889, 230808858283551859, 4051069379668626948, 74459335679007458268
Offset: 0

Views

Author

Juan S. Auli, Oct 16 2019

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers such that 0 <= e_i < i. The term a(n) counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i < e_{i+1} <= e_{i+2}. This is the same as the set of inversion sequences of length n avoiding the consecutive patterns 011 and 012.

Examples

			The a(4)=11 length 4 inversion sequences avoiding the consecutive patterns 011 and 012 are 0000, 0100, 0010, 0020, 0001, 0101, 0021, 0002, 0102, 0003, and 0103.
		

Crossrefs

Programs

  • Maple
    # after Alois P. Heinz in A328357
    b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
           `if`(t and i < x, 0, b(n - 1, i, i <= x)), i = 0 .. n - 1))
         end proc:
    a := n -> b(n, -1, false):
    seq(a(n), n = 0 .. 24);
  • Mathematica
    b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i < x, 0, b[n - 1, i, i <= x]], {i, 0, n - 1}]];
    a[n_] := b[n, -1, False];
    a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020, after Alois P. Heinz in A328357 *)

Formula

a(n) ~ n! * c * (3^(3/2)/(2*Pi))^n / n^alfa, where alfa = A073016 = Sum_{k>=1} 1/binomial(2*k, k) = 1/3 + 2*Pi/3^(5/2) = 0.73639985871871507790... and c = 2.21611825460684222558745179... - Vaclav Kotesovec, Oct 19 2019

A328437 Number of inversion sequences of length n avoiding the consecutive pattern 001.

Original entry on oeis.org

1, 1, 2, 4, 11, 42, 210, 1292, 9352, 77505, 722294, 7470003, 84854788, 1049924370, 14052654158, 202271440732, 3115338658280, 51118336314648, 890201500701303, 16397264064993185, 318505677099378561, 6506565509515408206, 139449260758011488550, 3128599281190613701180
Offset: 0

Views

Author

Juan S. Auli, Oct 17 2019

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers such that 0 <= e_i < i. The term a(n) counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i = e_{i+1} < e_{i+2}. That is, a(n) counts the inversion sequences of length n avoiding the consecutive pattern 001.

Examples

			The a(4)=11 length 4 inversion sequences avoiding the consecutive pattern 001 are 0000, 0100, 0110, 0120, 0101, 0111, 0121, 0102, 0122, 0103, and 0123.
		

Crossrefs

Programs

  • Maple
    # after Alois P. Heinz in A328357
    b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
           `if`(t and i = x, 0, b(n - 1, i, i < x)), i = 0 .. n - 1))
         end proc:
    a := n -> b(n, -1, false):
    seq(a(n), n = 0 .. 24);
  • Mathematica
    b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i == x, 0, b[n - 1, i, i < x]], {i, 0, n - 1}]];
    a[n_] := b[n, -1, False];
    a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020, after Alois P. Heinz in A328357 *)

Formula

a(n) ~ n! * c / sqrt(n), where c = 0.549342310436989831962783548104445992522... - Vaclav Kotesovec, Oct 18 2019

A328439 Number of inversion sequences of length n avoiding the consecutive pattern 011.

Original entry on oeis.org

1, 1, 2, 5, 17, 75, 407, 2621, 19524, 165090, 1561900, 16345264, 187452475, 2337729329, 31497068553, 455930417721, 7056447326642, 116279714536838, 2032547040624336, 37563420959431569, 731810131489893185, 14989602024463575408, 322032777284323744894, 7240745954488939549295
Offset: 0

Views

Author

Juan S. Auli, Oct 17 2019

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers such that 0 <= e_i < i. The term a(n) counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i < e_{i+1} = e_{i+2}. That is, a(n) counts the inversion sequences of length n avoiding the consecutive pattern 011.

Examples

			The a(4)=17 length 4 inversion sequences avoiding the consecutive pattern 011 are 0000, 0100, 0010, 0020, 0120, 0001, 0101, 0021, 0121, 0002, 0102, 0012, 0003, 0103, 0013, 0023, and 0123.
		

Crossrefs

Programs

  • Maple
    # after Alois P. Heinz in A328357
    b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
           `if`(t and i < x, 0, b(n - 1, i, i = x)), i = 0 .. n - 1))
         end proc:
    a := n -> b(n, -1, false):
    seq(a(n), n = 0 .. 24);
  • Mathematica
    b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i < x, 0, b[n - 1, i, i == x]], {i, 0, n - 1}]];
    a[n_] := b[n, -1, False];
    a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020, after Alois P. Heinz in A328357 *)

Formula

a(n) ~ n! * c / sqrt(n), where c = 1.3306953765239857433314976921138998977998... - Vaclav Kotesovec, Oct 19 2019

A328442 Number of inversion sequences of length n avoiding the consecutive pattern 210.

Original entry on oeis.org

1, 1, 2, 6, 24, 118, 684, 4554, 34192, 285558, 2624496, 26315990, 285828324, 3342566724, 41869664320, 559265742918, 7934746600620, 119162454310392, 1888417811354292, 31492626988890798, 551302582228438512, 10107905106374914860, 193700015975819881008, 3872391687779493752340, 80623321999146782133372
Offset: 0

Views

Author

Juan S. Auli, Oct 17 2019

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers such that 0 <= e_i < i. The term a(n) counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i > e_{i+1} > e_{i+2}. That is, a(n) counts the inversion sequences of length n avoiding the consecutive pattern 210.

Examples

			Note that a(5)=118. Indeed, of the 120 inversion sequences of length 5, the only ones that do not avoid the consecutive patterns 210 are 00210 and 01210.
		

Crossrefs

Programs

  • Maple
    # after Alois P. Heinz in A328357
    b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
           `if`(t and x < i, 0, b(n - 1, i, x < i)), i = 0 .. n - 1))
         end proc:
    a := n -> b(n, n, false):
    seq(a(n), n = 0 .. 24);
  • Mathematica
    b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && x < i, 0, b[n - 1, i, x < i]], {i, 0, n - 1}]];
    a[n_] := b[n, n, False];
    a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020, after Alois P. Heinz in A328357 *)

Formula

a(n) ~ n! * c * (3^(3/2)/(2*Pi))^n * n^(2*Pi/3^(3/2)), where c = 0.24427562500895080639039917229089... - Vaclav Kotesovec, Oct 19 2019

A328429 Number of inversion sequences of length n avoiding the consecutive patterns 012, 101, 102, and 201.

Original entry on oeis.org

1, 1, 2, 5, 14, 46, 170, 691, 3073, 14809, 76666, 423886, 2490514, 15479614, 101389508, 697513653, 5025406212, 37819960947, 296618360520, 2419362514273, 20484053318220, 179723185666151, 1631519158000420, 15302546831928727, 148099068509673563
Offset: 0

Views

Author

Juan S. Auli, Oct 15 2019

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers such that 0 <= e_i < i. The term a(n) counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i != e_{i+1} < e_{i+2}. This is the same as the set of inversion sequences of length n avoiding the consecutive patterns 012, 101, 102, and 201.

Examples

			The a(4)=14 length 4 inversion sequences avoiding the consecutive patterns 012, 101, 102, and 201 are 0000, 0100, 0010, 0110, 0020, 0001, 0011, 0111, 0021, 0002, 0112, 0022, 0003, and 0113.
		

Crossrefs

Programs

  • Maple
    # after Alois P. Heinz in A328357
    b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
           `if`(t and i <> x, 0, b(n-1, i, i b(n, -1, false):
    seq(a(n), n = 0 .. 24);
  • Mathematica
    b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i != x, 0, b[n - 1, i, i < x]], {i, 0, n - 1}]];
    a[n_] := b[n, -1, False];
    a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)

A328430 Number of inversion sequences of length n avoiding the consecutive patterns 001 and 012.

Original entry on oeis.org

1, 1, 2, 3, 7, 18, 70, 317, 1825, 11805, 88212, 727731, 6660103, 66377942, 718681969, 8376682083, 104703957902, 1395883946839, 19777652272297, 296686846198829, 4697959440255354, 78299282813403618, 1370127872827224359, 25114095425698971152, 481202765468970358153
Offset: 0

Views

Author

Juan S. Auli, Oct 15 2019

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers such that 0 <= e_i < i. The term a(n) counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i <= e_{i+1} < e_{i+2}. This is the same as the set of inversion sequences of length n avoiding the consecutive patterns 001 and 012.

Examples

			The a(4)=7 length 4 inversion sequences avoiding the consecutive patterns 001 and 012 are 0000, 0100, 0110, 0101, 0111, 0102, and 0103.
		

Crossrefs

Programs

  • Maple
    # after Alois P. Heinz in A328357
    b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
           `if`(t and i <= x, 0, b(n - 1, i, i < x)), i = 0 .. n - 1))
         end proc:
    a := n -> b(n, -1, false):
    seq(a(n), n = 0 .. 24);
  • Mathematica
    b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i <= x, 0, b[n - 1, i, i < x]], {i, 0, n - 1}]];
    a[n_] := b[n, -1, False];
    a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)

A328431 Number of inversion sequences of length n avoiding the consecutive patterns 010, 021, 120, and 210.

Original entry on oeis.org

1, 1, 2, 5, 15, 53, 214, 960, 4701, 24873, 141147, 853641, 5472642, 37024569, 263342224, 1962835806, 15288074104, 124120865849, 1048092680689, 9186689045482, 83435365244510, 783923558286071, 7608398620990535, 76177574145052258, 785853360840424425
Offset: 0

Views

Author

Juan S. Auli, Oct 16 2019

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers such that 0 <= e_i < i. The term a(n) counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i != e_{i+1} > e_{i+2}. This is the same as the set of inversion sequences of length n avoiding the consecutive patterns 010, 021, 120, and 210.

Examples

			The a(4)=15 length 4 inversion sequences avoiding the consecutive patterns 010, 021, 120, and 210 are 0000, 0110, 0001, 0011, 0111, 0002, 0012, 0112, 0022, 0122, 0003, 0013, 0113, 0023, and 0123.
		

Crossrefs

Programs

  • Maple
    # after Alois P. Heinz in A328357
    b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
           `if`(t and i <> x, 0, b(n - 1, i, x < i)), i = 0 .. n - 1))
         end proc:
    a := n -> b(n, n, false):
    seq(a(n), n = 0 .. 24);
  • Mathematica
    b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i != x, 0, b[n - 1, i, x < i]], {i, 0, n - 1}]];
    a[n_] := b[n, n, False];
    a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)

A328432 Number of inversion sequences of length n avoiding the consecutive patterns 010, 021, and 120.

Original entry on oeis.org

1, 1, 2, 5, 15, 53, 216, 994, 5076, 28403, 172538, 1129511, 7919314, 59150556, 468504022, 3919569708, 34518111783, 319030219223, 3086250047021, 31174921402976, 328110078110137, 3591110146030066, 40800503952916639, 480429785491094856, 5854374278697301978
Offset: 0

Views

Author

Juan S. Auli, Oct 16 2019

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers such that 0 <= e_i < i. The term a(n) counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i < e_{i+1} > e_{i+2}. This is the same as the set of inversion sequences of length n avoiding the consecutive patterns 010, 021, and 120.

Examples

			The a(4)=15 length 4 inversion sequences avoiding the consecutive patterns 010, 021, 120 and are 0000, 0110, 0001, 0011, 0111, 0002, 0012, 0112, 0022, 0122, 0003, 0013, 0113, 0023, and 0123.
		

Crossrefs

Programs

  • Maple
    # after Alois P. Heinz in A328357
    b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
           `if`(t and i < x, 0, b(n - 1, i, i > x)), i = 0 .. n - 1))
         end proc:
    a := n -> b(n, n, false):
    seq(a(n), n = 0 .. 24);
  • Mathematica
    b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i < x, 0, b[n - 1, i, i > x]], {i, 0, n - 1}]];
    a[n_] := b[n, n, False];
    a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
Showing 1-10 of 18 results. Next