cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Michael Taktikos

Michael Taktikos's wiki page.

Michael Taktikos has authored 5 sequences.

A102084 a(1) = 0; for n>0, write 2n=p+q (p, q prime), p*q maximal; then a(n)=p*q (see A073046).

Original entry on oeis.org

0, 4, 9, 15, 25, 35, 49, 55, 77, 91, 121, 143, 169, 187, 221, 247, 289, 323, 361, 391, 437, 403, 529, 551, 589, 667, 713, 703, 841, 899, 961, 943, 1073, 1147, 1189, 1271, 1369, 1363, 1517, 1591, 1681, 1763, 1849, 1927, 2021, 1891, 2209, 2279, 2257, 2491
Offset: 1

Author

Michael Taktikos, Feb 16 2005

Keywords

Comments

For n>1, largest semiprime whose sum of prime factors = 2n. Assumes the Goldbach conjecture is true. Also the largest semiprime <= n^2.
Also the greatest integer x such that x' = 2*n, or 0 if there is no such x, where x' is the arithmetic derivative (A003415). Bisection of A099303. The only even number without an anti-derivative is 2. All terms are <= n^2, with equality only when n is prime. In fact a(n) = n^2 - k^2, where k is the least number such that both n-k and n+k are prime; k = A047160(n). It appears that the anti-derivatives of even numbers are overwhelmingly semiprimes of the form n^2 - k^2. For example, 1000 has 28 anti-derivatives, all of this form. Sequence A189763 lists the even numbers that have anti-derivatives not of this form. - T. D. Noe, Apr 27 2011

Examples

			n=13: 2n = 26; 26 = 23 + 3 = 19 + 7 = 13 + 13; 13*13 = maximal => p*q = 13*13 = 169.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{pf = FactorInteger[n]}, If[Plus @@ Last /@ pf == 2, If[ Length[pf] == 2, Plus @@ First /@ pf, 2pf[[1, 1]]], 0]]; t = Table[0, {51}]; Do[a = f[n]; If[ EvenQ[a] && 0 < a < 104, t[[a/2]] = n], {n, 2540}]; t (* Robert G. Wilson v, Jun 14 2005 *)
    Table[k = 0; While[k < n && (! PrimeQ[n - k] || ! PrimeQ[n + k]), k++]; If[k == n, 0, (n - k)*(n + k)], {n, 100}] (* T. D. Noe, Apr 27 2011 *)

Formula

a(n) = n^2 - A047160(n)^2. - Jason Kimberley, Jun 26 2012

Extensions

Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar

A096233 Number of digits of the 10^n-th tribonacci number (A000073).

Original entry on oeis.org

2, 26, 264, 2646, 26464, 264649, 2646494, 26464944, 264649443, 2646494434, 26464944348, 264649443484, 2646494434842, 26464944348425, 264649443484250, 2646494434842508, 26464944348425087
Offset: 0

Author

Michael Taktikos, Aug 09 2004

Keywords

Comments

a(n)/10^n tends towards log[10](rho) = .26464944348425087191..., where rho is the real root of x^3-x^2-x-1 = 0. - Vladeta Jovovic, Sep 01 2004

Crossrefs

Cf. A068070.

Programs

  • Mathematica
    rho=1/3*((19+3*Sqrt[33])^(1/3)+(19-3*Sqrt[33])^(1/3)+1); triboappr[n_]:=N[(rho-1)/(4rho-6)*rho^(n-3), 3000]; Table[MantissaExponent[triboappr[10^i]][[2]], {i, 1, 7}]

A097353 Number of digits of the (10^n)-th tetranacci number (A000078(10^n)).

Original entry on oeis.org

1, 2, 28, 284, 2849, 28500, 285008, 2850083, 28500834, 285008350, 2850083504, 28500835049, 285008350498, 2850083504986, 28500835049863, 285008350498633, 2850083504986335, 28500835049863359, 285008350498633597, 2850083504986335973
Offset: 0

Author

Michael Taktikos, Sep 17 2004

Keywords

Comments

a(n)/10^n converges to 0.28500835...

Examples

			Let t(n) = A000078(n). Then we have t(1) = 0, t(10) = 56, t(100) = 2505471397838180985096739296, with respectively 1, 2, 28 and 284 digits.
		

Programs

  • Maple
    # This Maple code will at least get the first few terms correctly!
    f:=proc(n) option remember; if n <= 2 then RETURN(0); fi; if n = 3 then RETURN(1); fi; f(n-1) + f(n-2) + f(n-3) +f(n-4); end; for n from 0 to 4 do lprint(f(10^n), length(f(10^n))); od;
  • Mathematica
    a = b = c = 0; d = i = 1; Do[e = a + b + c + d; a = b; b = c; c = d; d = e; If[n == 10^i, Print[Length[IntegerDigits[e]]]; i++ ], {n, 4, 10^6}] (* Ryan Propper, Jul 22 2005 *)
  • PARI
    \p 100 x=solve(x=1.9274,1.9276,x^4-x^3-x^2-x-1); r=solve(x=0.2937,0.2939,563*x^4-20*x^2-5*x-1); for(k=1,25,n=10^k;print1(floor( (log(r)+(n-2)*log(x))/log(10) )+1",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007

Formula

a(n) = floor(log_10(r) + (10^n-2)*log_10(x)) + 1 for n >= 1, where x is the positive real root of the tetranacci limit equation x^4 - x^3 - x^2 - x - 1 = 0, x = 1.92756... and r is the positive real root of the tetranacci auxiliary equation 563r^4 - 20r^2 - 5r - 1 = 0, r = 0.293813... - Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007

Extensions

2 more terms from Ryan Propper, Jul 22 2005
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007

A094776 a(n) = largest k such that the decimal representation of 2^k does not contain the digit n.

Original entry on oeis.org

86, 91, 168, 153, 107, 71, 93, 71, 78, 108
Offset: 0

Author

Michael Taktikos, Jun 09 2004

Keywords

Comments

These values are only conjectural.
The sequence could be extended to any nonnegative integer index n defining a(n) to be the largest k such that n does not appear as substring in the decimal expansion of 2^k. I conjecture that for n = 10, 11, 12, ... it continues (2000, 3020, 1942, 1465, 1859, 2507, 1950, 1849, 1850, ...). For example, curiously enough, the largest power of 2 in which the string "10" does not appear seems to be 2^2000. - M. F. Hasler, Feb 10 2023

Examples

			a(0) = 86 because 2^86 = 77371252455336267181195264 is conjectured to be the highest power of 2 that doesn't contain the digit 0.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 71, p. 25, Ellipses, Paris 2008.

Crossrefs

Cf. A027870 and A065712 - A065744 (number of '0's, ..., '9's in 2^n).
Cf. A034293 (numbers k such that 2^k has no '2').

Programs

  • Mathematica
    f[n_] := Block[{a = {}, k = 1}, While[k < 10000, If[ Position[ Union[ IntegerDigits[ 2^k, 10]], n] == {}, AppendTo[a, k]]; k++ ]; a]; Table[ f[n][[ -1]], {n, 0, 9}] (* Robert G. Wilson v, Jun 12 2004 *)
  • PARI
    A094776(n,L=10*20^#Str(n))={forstep(k=L, 0, -1, foreach(digits(1<M. F. Hasler, Feb 13 2023
    
  • Python
    def A094776(n, L=0):
       n = str(n)
       for k in range(L if L else 10*20**len(n), 0, -1):
          if n not in str(2**k): return k # M. F. Hasler, Feb 13 2023

A095807 Number of integers from 0 to 10^n - 1 whose decimal digits include at least one 0.

Original entry on oeis.org

1, 10, 181, 2620, 33571, 402130, 4619161, 51572440, 564151951, 6077367550, 64696307941, 682266771460, 7140400943131, 74263608488170, 768372476393521, 7915352287541680, 81238170587875111
Offset: 1

Author

Michael Taktikos, Aug 25 2004

Keywords

Examples

			a(3)=181 because among the integers from 0 to 999 there are 181 numbers which contain at least 1 zero.
		

Crossrefs

Cf. A016189.

Programs

  • Magma
    [10^n + 9/8 - 9^(1+n)/8: n in [1..20]]; // Vincenzo Librandi, Aug 14 2013
  • Mathematica
    LinearRecurrence[{20,-109,90},{1,10,181},20] (* or *) Rest[ CoefficientList[ Series[(1-19x+99x^2)/((1-x)(1-10x)(1-9x)),{x,0,20}], x]] (* Harvey P. Dale, Jun 20 2015 *)
  • PARI
    a(n) = 10^n + 9/8 - 9^(1+n)/8; \\ Michel Marcus, Aug 13 2013
    

Formula

a(n) = 10^n + 9/8 - 9^(1+n)/8.
G.f.: (1-19*x+99*x^2)/((1-x)*(1-10*x)*(1-9*x)). - Vincenzo Librandi, Aug 14 2013
a(n) = 20*a(n-1) - 109*a(n-2) + 90*a(n-3); a(0)=1, a(1)=10, a(2)=181. - Harvey P. Dale, Jun 20 2015
Limit_{n->oo} a(n+1)/a(n) = 10. - Bernard Schott, Feb 28 2023