cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A371998 a(n) = A000166(floor(n/2)) if n is even otherwise A000240(floor((n + 1)/2)).

Original entry on oeis.org

1, 1, 0, 0, 1, 3, 2, 8, 9, 45, 44, 264, 265, 1855, 1854, 14832, 14833, 133497, 133496, 1334960, 1334961, 14684571, 14684570, 176214840, 176214841, 2290792933, 2290792932, 32071101048, 32071101049, 481066515735, 481066515734, 7697064251744, 7697064251745
Offset: 0

Views

Author

Peter Luschny, Apr 25 2024

Keywords

Crossrefs

Programs

  • Maple
    a := n -> if irem(n,2) = 0 then A000166(iquo(n,2)) else A000240(iquo(n+1,2)) fi:
    seq(a(n), n = 0..32);
  • Python
    from functools import cache
    @cache
    def sf(n):
        if n == 0: return 1
        return n * sf(n - 1) + (-1 if n % 2 else 1)
    def a(n):
        h, r = divmod(n, 2)
        return sf(h) * (h + 1) if r else sf(h)
    print([a(n) for n in range(33)])

A000166 Subfactorial or rencontres numbers, or derangements: number of permutations of n elements with no fixed points.

Original entry on oeis.org

1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 176214841, 2290792932, 32071101049, 481066515734, 7697064251745, 130850092279664, 2355301661033953, 44750731559645106, 895014631192902121, 18795307255050944540, 413496759611120779881, 9510425471055777937262
Offset: 0

Views

Author

Keywords

Comments

Euler (1809) not only gives the first ten or so terms of the sequence, he also proves both recurrences a(n) = (n-1)*(a(n-1) + a(n-2)) and a(n) = n*a(n-1) + (-1)^n.
a(n) is the permanent of the matrix with 0 on the diagonal and 1 elsewhere. - Yuval Dekel, Nov 01 2003
a(n) is the number of desarrangements of length n. A desarrangement of length n is a permutation p of {1,2,...,n} for which the smallest of all the ascents of p (taken to be n if there are no ascents) is even. Example: a(3) = 2 because we have 213 and 312 (smallest ascents at i = 2). See the J. Désarménien link and the Bona reference (p. 118). - Emeric Deutsch, Dec 28 2007
a(n) is the number of deco polyominoes of height n and having in the last column an even number of cells. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. - Emeric Deutsch, Dec 28 2007
Attributed to Nicholas Bernoulli in connection with a probability problem that he presented. See Problem #15, p. 494, in "History of Mathematics" by David M. Burton, 6th edition. - Mohammad K. Azarian, Feb 25 2008
a(n) is the number of permutations p of {1,2,...,n} with p(1)!=1 and having no right-to-left minima in consecutive positions. Example a(3) = 2 because we have 231 and 321. - Emeric Deutsch, Mar 12 2008
a(n) is the number of permutations p of {1,2,...,n} with p(n)! = n and having no left to right maxima in consecutive positions. Example a(3) = 2 because we have 312 and 321. - Emeric Deutsch, Mar 12 2008
Number of wedged (n-1)-spheres in the homotopy type of the Boolean complex of the complete graph K_n. - Bridget Tenner, Jun 04 2008
The only prime number in the sequence is 2. - Howard Berman (howard_berman(AT)hotmail.com), Nov 08 2008
From Emeric Deutsch, Apr 02 2009: (Start)
a(n) is the number of permutations of {1,2,...,n} having exactly one small ascent. A small ascent in a permutation (p_1,p_2,...,p_n) is a position i such that p_{i+1} - p_i = 1. (Example: a(3) = 2 because we have 312 and 231; see the Charalambides reference, pp. 176-180.) [See also David, Kendall and Barton, p. 263. - N. J. A. Sloane, Apr 11 2014]
a(n) is the number of permutations of {1,2,...,n} having exactly one small descent. A small descent in a permutation (p_1,p_2,...,p_n) is a position i such that p_i - p_{i+1} = 1. (Example: a(3)=2 because we have 132 and 213.) (End)
For n > 2, a(n) + a(n-1) = A000255(n-1); where A000255 = (1, 1, 3, 11, 53, ...). - Gary W. Adamson, Apr 16 2009
Connection to A002469 (game of mousetrap with n cards): A002469(n) = (n-2)*A000255(n-1) + A000166(n). (Cf. triangle A159610.) - Gary W. Adamson, Apr 17 2009
From Emeric Deutsch, Jul 18 2009: (Start)
a(n) is the sum of the values of the largest fixed points of all non-derangements of length n-1. Example: a(4)=9 because the non-derangements of length 3 are 123, 132, 213, and 321, having largest fixed points 3, 1, 3, and 2, respectively.
a(n) is the number of non-derangements of length n+1 for which the difference between the largest and smallest fixed point is 2. Example: a(3) = 2 because we have 1'43'2 and 32'14'; a(4) = 9 because we have 1'23'54, 1'43'52, 1'53'24, 52'34'1, 52'14'3, 32'54'1, 213'45', 243'15', and 413'25' (the extreme fixed points are marked).
(End)
a(n), n >= 1, is also the number of unordered necklaces with n beads, labeled differently from 1 to n, where each necklace has >= 2 beads. This produces the M2 multinomial formula involving partitions without part 1 given below. Because M2(p) counts the permutations with cycle structure given by partition p, this formula gives the number of permutations without fixed points (no 1-cycles), i.e., the derangements, hence the subfactorials with their recurrence relation and inputs. Each necklace with no beads is assumed to contribute a factor 1 in the counting, hence a(0)=1. This comment derives from a family of recurrences found by Malin Sjodahl for a combinatorial problem for certain quark and gluon diagrams (Feb 27 2010). - Wolfdieter Lang, Jun 01 2010
From Emeric Deutsch, Sep 06 2010: (Start)
a(n) is the number of permutations of {1,2,...,n, n+1} starting with 1 and having no successions. A succession in a permutation (p_1,p_2,...,p_n) is a position i such that p_{i+1} - p_i = 1. Example: a(3)=2 because we have 1324 and 1432.
a(n) is the number of permutations of {1,2,...,n} that do not start with 1 and have no successions. A succession in a permutation (p_1,p_2,...,p_n) is a position i such that p_{i+1} - p_i = 1. Example: a(3)=2 because we have 213 and 321.
(End)
Increasing colored 1-2 trees with choice of two colors for the rightmost branch of nonleave except on the leftmost path, there is no vertex of outdegree one on the leftmost path. - Wenjin Woan, May 23 2011
a(n) is the number of zeros in n-th row of the triangle in A170942, n > 0. - Reinhard Zumkeller, Mar 29 2012
a(n) is the maximal number of totally mixed Nash equilibria in games of n players, each with 2 pure options. - Raimundas Vidunas, Jan 22 2014
Convolution of sequence A135799 with the sequence generated by 1+x^2/(2*x+1). - Thomas Baruchel, Jan 08 2016
The number of interior lattice points of the subpolytope of the n-dimensional permutohedron whose vertices correspond to permutations avoiding 132 and 312. - Robert Davis, Oct 05 2016
Consider n circles of different radii, where each circle is either put inside some bigger circle or contains a smaller circle inside it (no common points are allowed). Then a(n) gives the number of such combinations. - Anton Zakharov, Oct 12 2016
If we partition the permutations of [n+1] in A000240 according to their starting digit, we will get (n+1) equinumerous classes each of size a(n), i.e., A000240(n+1) = (n+1)*a(n), hence a(n) is the size of each class of permutations of [n+1] in A000240. For example, for n = 4 we have 45 = 5*9. - Enrique Navarrete, Jan 10 2017
Call d_n1 the permutations of [n] that have the substring n1 but no substring in {12,23,...,(n-1)n}. If we partition them according to their starting digit, we will get (n-1) equinumerous classes each of size A000166(n-2) (the class starting with the digit 1 is empty since we must have the substring n1). Hence d_n1 = (n-1)*A000166(n-2) and A000166(n-2) is the size of each nonempty class in d_n1. For example, d_71 = 6*44 = 264, so there are 264 permutations in d_71 distributed in 6 nonempty classes of size A000166(5) = 44. (To get permutations in d_n1 recursively from more basic ones see the link "Forbidden Patterns" below.) - Enrique Navarrete, Jan 15 2017
Also the number of maximum matchings and minimum edge covers in the n-crown graph. - Eric W. Weisstein, Jun 14 and Dec 24 2017
The sequence a(n) taken modulo a positive integer k is periodic with exact period dividing k when k is even and dividing 2*k when k is odd. This follows from the congruence a(n+k) = (-1)^k*a(n) (mod k) for all n and k, which in turn is easily proved by induction making use of the recurrence a(n) = n*a(n-1) + (-1)^n. - Peter Bala, Nov 21 2017
a(n) is the number of distinct possible solutions for a directed, no self loop containing graph (not necessarily connected) that has n vertices, and each vertex has an in- and out-degree of exactly 1. - Patrik Holopainen, Sep 18 2018
a(n) is the dimension of the kernel of the random-to-top and random-to-random shuffling operators over a collection of n objects (in a vector space of size n!), as noticed by M. Wachs and V. Reiner. See the Reiner, Saliola and Welker reference below. - Nadia Lafreniere, Jul 18 2019
a(n) is the number of distinct permutations for a Secret Santa gift exchange with n participants. - Patrik Holopainen, Dec 30 2019
a(2*n+1) is even. More generally, a(m*n+1) is divisible by m*n, which follows from a(n+1) = n*(a(n) + a(n-1)) = n*A000255(n-1) for n >= 1. a(2*n) is odd; in fact, a(2*n) == 1 (mod 8). Other divisibility properties include a(6*n) == 1 (mod 24), a(9*n+4) == a(9*n+7) == 0 (mod 9), a(10*n) == 1 (mod 40), a(11*n+5) == 0 (mod 11) and a(13*n+8 ) == 0 (mod 13). - Peter Bala, Apr 05 2022
Conjecture: a(n) with n > 2 is a perfect power only for n = 4 with a(4) = 3^2. This has been verified for n <= 1000. - Zhi-Wei Sun, Jan 09 2025

Examples

			a(2) = 1, a(3) = 2 and a(4) = 9 since the possibilities are {BA}, {BCA, CAB} and {BADC, BCDA, BDAC, CADB, CDAB, CDBA, DABC, DCAB, DCBA}. - _Henry Bottomley_, Jan 17 2001
The Boolean complex of the complete graph K_4 is homotopy equivalent to the wedge of 9 3-spheres.
Necklace problem for n = 6: partitions without part 1 and M2 numbers for n = 6: there are A002865(6) = 4 such partitions, namely (6), (2,4), (3^2) and (2^3) in A-St order with the M2 numbers 5!, 90, 40 and 15, respectively, adding up to 265 = a(6). This corresponds to 1 necklace with 6 beads, two necklaces with 2 and 4 beads respectively, two necklaces with 3 beads each and three necklaces with 2 beads each. - _Wolfdieter Lang_, Jun 01 2010
G.f. = 1 + x^2 + 9*x^3 + 44*x^4 + 265*x^5 + 1854*x^6 + 14833*x^7 + 133496*x^8 + ...
		

References

  • U. Abel, Some new identities for derangement numbers, Fib. Q., 56:4 (2018), 313-318.
  • M. Bona, Combinatorics of Permutations, Chapman & Hall/CRC, Boca Raton, Florida, 2004.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 32.
  • R. A. Brualdi and H. J. Ryser: Combinatorial Matrix Theory, 1992, Section 7.2, p. 202.
  • Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 182.
  • Florence Nightingale David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 168.
  • Florence Nightingale David, Maurice George Kendall, and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263, Table 7.5.1, row 1.
  • P. R. de Montmort, On the Game of Thirteen (1713), reprinted in Annotated Readings in the History of Statistics, ed. H. A. David and A. W. F. Edwards, Springer-Verlag, 2001, pp. 25-29.
  • J. M. de Saint-Martin, "Le problème des rencontres" in Quadrature, No. 61, pp. 14-19, 2006, EDP-Sciences Les Ulis (France).
  • H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 19.
  • Leonhard Euler, Solution quaestionis curiosae ex doctrina combinationum, Mémoires Académie sciences St. Pétersburg 3 (1809/1810), 57-64; also E738 in his Collected Works, series I, volume 7, pages 435-440.
  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • A. Hald, A History of Probability and Statistics and Their Applications Before 1750, Wiley, NY, 1990 (Chapter 19).
  • Irving Kaplansky, John Riordan, The problème des ménages. Scripta Math. 12 (1946), 113-124. See Eq(1).
  • Arnold Kaufmann, "Introduction à la combinatorique en vue des applications." Dunod, Paris, 1968. See p. 92.
  • Florian Kerschbaum and Orestis Terzidis, Filtering for Private Collaborative Benchmarking, in Emerging Trends in Information and Communication Security, Lecture Notes in Computer Science, Volume 3995/2006.
  • E. Lozansky and C. Rousseau, Winning Solutions, Springer, 1996; see p. 152.
  • P. A. MacMahon, Combinatory Analysis, 2 vols., Chelsea, NY, 1960, see p. 102.
  • M. S. Petković, "Non-attacking rooks", Famous Puzzles of Great Mathematicians, pp. 265-268, Amer. Math. Soc.(AMS), 2009.
  • V. Reiner, F. Saliola, and V. Welker. Spectra of Symmetrized Shuffling Operators, Memoirs of the American Mathematical Society, vol. 228, Amer. Math. Soc., Providence, RI, 2014, pp. 1-121. See section VI.9.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.
  • H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 23.
  • T. Simpson, Permutations with unique fixed and reflected points. Ars Combin. 39 (1995), 97-108.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 122.
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 82.
  • H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 147, Eq. 5.2.9 (q=1).

Crossrefs

For the probabilities a(n)/n!, see A053557/A053556 and A103816/A053556.
A diagonal of A008291 and A068106. Column A008290(n,0).
A001120 has a similar recurrence.
For other derangement numbers see also A053871, A033030, A088991, A088992.
Pairwise sums of A002741 and A000757. Differences of A001277.
A diagonal in triangles A008305 and A010027.
a(n)/n! = A053557/A053556 = (N(n, n) of A103361)/(D(n, n) of A103360).
Column k=0 of A086764 and of A334715. Column k=1 of A364068.
Row sums of A216963 and of A323671.

Programs

  • Haskell
    a000166 n = a000166_list !! n
    a000166_list = 1 : 0 : zipWith (*) [1..]
                           (zipWith (+) a000166_list $ tail a000166_list)
    -- Reinhard Zumkeller, Dec 09 2012
    
  • Magma
    I:=[0,1]; [1] cat [n le 2 select I[n] else (n-1)*(Self(n-1)+Self(n-2)): n in [1..30]]; // Vincenzo Librandi, Jan 07 2016
  • Maple
    A000166 := proc(n) option remember; if n<=1 then 1-n else (n-1)*(procname(n-1)+procname(n-2)); fi; end;
    a:=n->n!*sum((-1)^k/k!, k=0..n): seq(a(n), n=0..21); # Zerinvary Lajos, May 17 2007
    ZL1:=[S,{S=Set(Cycle(Z,card>1))},labeled]: seq(count(ZL1,size=n),n=0..21); # Zerinvary Lajos, Sep 26 2007
    with (combstruct):a:=proc(m) [ZL,{ZL=Set(Cycle(Z,card>=m))},labeled]; end: A000166:=a(2):seq(count(A000166,size=n),n=0..21); # Zerinvary Lajos, Oct 02 2007
    Z := (x, m)->m!^2*sum(x^j/((m-j)!^2), j=0..m): R := (x, n, m)->Z(x, m)^n: f := (t, n, m)->sum(coeff(R(x, n, m), x, j)*(t-1)^j*(n*m-j)!, j=0..n*m): seq(f(0, n, 1), n=0..21); # Zerinvary Lajos, Jan 22 2008
    a:=proc(n) if `mod`(n,2)=1 then sum(2*k*factorial(n)/factorial(2*k+1), k=1.. floor((1/2)*n)) else 1+sum(2*k*factorial(n)/factorial(2*k+1), k=1..floor((1/2)*n)-1) end if end proc: seq(a(n),n=0..20); # Emeric Deutsch, Feb 23 2008
    G(x):=2*exp(-x)/(1-x): f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n]/2,n=0..21); # Zerinvary Lajos, Apr 03 2009
    seq(simplify(KummerU(-n, -n, -1)), n = 0..23); # Peter Luschny, May 10 2022
  • Mathematica
    a[0] = 1; a[n_] := n*a[n - 1] + (-1)^n; a /@ Range[0, 21] (* Robert G. Wilson v *)
    a[0] = 1; a[1] = 0; a[n_] := Round[n!/E] /; n >= 1 (* Michael Taktikos, May 26 2006 *)
    Range[0, 20]! CoefficientList[ Series[ Exp[ -x]/(1 - x), {x, 0, 20}], x]
    dr[{n_,a1_,a2_}]:={n+1,a2,n(a1+a2)}; Transpose[NestList[dr,{0,0,1},30]][[3]] (* Harvey P. Dale, Feb 23 2013 *)
    a[n_] := (-1)^n HypergeometricPFQ[{- n, 1}, {}, 1]; (* Michael Somos, Jun 01 2013 *)
    a[n_] := n! SeriesCoefficient[Exp[-x] /(1 - x), {x, 0, n}]; (* Michael Somos, Jun 01 2013 *)
    Table[Subfactorial[n], {n, 0, 21}] (* Jean-François Alcover, Jan 10 2014 *)
    RecurrenceTable[{a[n] == n*a[n - 1] + (-1)^n, a[0] == 1}, a, {n, 0, 23}] (* Ray Chandler, Jul 30 2015 *)
    Subfactorial[Range[0, 20]] (* Eric W. Weisstein, Dec 31 2017 *)
    nxt[{n_,a_}]:={n+1,a(n+1)+(-1)^(n+1)}; NestList[nxt,{0,1},25][[All,2]] (* Harvey P. Dale, Jun 01 2019 *)
  • Maxima
    s[0]:1$
    s[n]:=n*s[n-1]+(-1)^n$
    makelist(s[n],n,0,12); /* Emanuele Munarini, Mar 01 2011 */
    
  • PARI
    {a(n) = if( n<1, 1, n * a(n-1) + (-1)^n)}; /* Michael Somos, Mar 24 2003 */
    
  • PARI
    {a(n) = n! * polcoeff( exp(-x + x * O(x^n)) / (1 - x), n)}; /* Michael Somos, Mar 24 2003 */
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m^m*x^m/(1+(m+1)*x+x*O(x^n))^(m+1)),n)} /* Paul D. Hanna */
    
  • PARI
    A000166=n->n!*sum(k=0,n,(-1)^k/k!) \\ M. F. Hasler, Jan 26 2012
    
  • PARI
    a(n)=if(n,round(n!/exp(1)),1) \\ Charles R Greathouse IV, Jun 17 2012
    
  • PARI
    apply( {A000166(n)=n!\/exp(n>0)}, [0..22]) \\ M. F. Hasler, Nov 09 2024
    
  • Python
    See Hobson link.
    
  • Python
    A000166_list, m, x = [], 1, 1
    for n in range(10*2):
        x, m = x*n + m, -m
        A000166_list.append(x) # Chai Wah Wu, Nov 03 2014
    

Formula

a(n) = A008290(n,0).
a(n) + A003048(n+1) = 2*n!. - D. G. Rogers, Aug 26 2006
a(n) = {(n-1)!/exp(1)}, n > 1, where {x} is the nearest integer function. - Simon Plouffe, March 1993 [This uses offset 1, see below for the version with offset 0. - Charles R Greathouse IV, Jan 25 2012]
a(0) = 1, a(n) = round(n!/e) = floor(n!/e + 1/2) for n > 0.
a(n) = n!*Sum_{k=0..n} (-1)^k/k!.
D-finite with recurrence a(n) = (n-1)*(a(n-1) + a(n-2)), n > 0.
a(n) = n*a(n-1) + (-1)^n.
E.g.f.: exp(-x)/(1-x).
a(n) = Sum_{k=0..n} binomial(n, k)*(-1)^(n-k)*k! = Sum_{k=0..n} (-1)^(n-k)*n!/(n-k)!. - Paul Barry, Aug 26 2004
The e.g.f. y(x) satisfies y' = x*y/(1-x).
Inverse binomial transform of A000142. - Ross La Haye, Sep 21 2004
In Maple notation, representation as n-th moment of a positive function on [-1, infinity]: a(n)= int( x^n*exp(-x-1), x=-1..infinity ), n=0, 1... . a(n) is the Hamburger moment of the function exp(-1-x)*Heaviside(x+1). - Karol A. Penson, Jan 21 2005
a(n) = A001120(n) - n!. - Philippe Deléham, Sep 04 2005
a(n) = Integral_{x=0..oo} (x-1)^n*exp(-x) dx. - Gerald McGarvey, Oct 14 2006
a(n) = Sum_{k=2,4,...} T(n,k), where T(n,k) = A092582(n,k) = k*n!/(k+1)! for 1 <= k < n and T(n,n)=1. - Emeric Deutsch, Feb 23 2008
a(n) = n!/e + (-1)^n*(1/(n+2 - 1/(n+3 - 2/(n+4 - 3/(n+5 - ...))))). Asymptotic result (Ramanujan): (-1)^n*(a(n) - n!/e) ~ 1/n - 2/n^2 + 5/n^3 - 15/n^4 + ..., where the sequence [1,2,5,15,...] is the sequence of Bell numbers A000110. - Peter Bala, Jul 14 2008
From William Vaughn (wvaughn(AT)cvs.rochester.edu), Apr 13 2009: (Start)
a(n) = Integral_{p=0..1} (log(1/(1-p)) - 1)^n dp.
Proof: Using the substitutions 1=log(e) and y = e(1-p) the above integral can be converted to ((-1)^n/e) Integral_{y=0..e} (log(y))^n dy.
From CRC Integral tables we find the antiderivative of (log(y))^n is (-1)^n n! Sum_{k=0..n} (-1)^k y(log(y))^k / k!.
Using the fact that e(log(e))^r = e for any r >= 0 and 0(log(0))^r = 0 for any r >= 0 the integral becomes n! * Sum_{k=0..n} (-1)^k / k!, which is line 9 of the Formula section. (End)
a(n) = exp(-1)*Gamma(n+1,-1) (incomplete Gamma function). - Mark van Hoeij, Nov 11 2009
G.f.: 1/(1-x^2/(1-2x-4x^2/(1-4x-9x^2/(1-6x-16x^2/(1-8x-25x^2/(1-... (continued fraction). - Paul Barry, Nov 27 2009
a(n) = Sum_{p in Pano1(n)} M2(p), n >= 1, with Pano1(n) the set of partitions without part 1, and the multinomial M2 numbers. See the characteristic array for partitions without part 1 given by A145573 in Abramowitz-Stegun (A-S) order, with A002865(n) the total number of such partitions. The M2 numbers are given for each partition in A-St order by the array A036039. - Wolfdieter Lang, Jun 01 2010
a(n) = row sum of A008306(n), n > 1. - Gary Detlefs, Jul 14 2010
a(n) = ((-1)^n)*(n-1)*hypergeom([-n+2, 2], [], 1), n>=1; 1 for n=0. - Wolfdieter Lang, Aug 16 2010
a(n) = (-1)^n * hypergeom([ -n, 1], [], 1), n>=1; 1 for n=0. From the binomial convolution due to the e.g.f. - Wolfdieter Lang, Aug 26 2010
Integral_{x=0..1} x^n*exp(x) = (-1)^n*(a(n)*e - n!).
O.g.f.: Sum_{n>=0} n^n*x^n/(1 + (n+1)*x)^(n+1). - Paul D. Hanna, Oct 06 2011
Abs((a(n) + a(n-1))*e - (A000142(n) + A000142(n-1))) < 2/n. - Seiichi Kirikami, Oct 17 2011
G.f.: hypergeom([1,1],[],x/(x+1))/(x+1). - Mark van Hoeij, Nov 07 2011
From Sergei N. Gladkovskii, Nov 25 2011, Jul 05 2012, Sep 23 2012, Oct 13 2012, Mar 09 2013, Mar 10 2013, Oct 18 2013: (Start)
Continued fractions:
In general, e.g.f. (1+a*x)/exp(b*x) = U(0) with U(k) = 1 + a*x/(1-b/(b-a*(k+1)/U(k+1))). For a=-1, b=-1: exp(-x)/(1-x) = 1/U(0).
E.g.f.: (1-x/(U(0)+x))/(1-x), where U(k) = k+1 - x + (k+1)*x/U(k+1).
E.g.f.: 1/Q(0) where Q(k) = 1 - x/(1 - 1/(1 - (k+1)/Q(k+1))).
G.f.: 1/U(0) where U(k) = 1 + x - x*(k+1)/(1 - x*(k+1)/U(k+1)).
G.f.: Q(0)/(1+x) where Q(k) = 1 + (2*k+1)*x/((1+x)-2*x*(1+x)*(k+1)/(2*x*(k+1)+(1+x)/ Q(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 - 2*k*x - x^2*(k + 1)^2/Q(k+1).
G.f.: T(0) where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2-(1-2*x*k)*(1-2*x-2*x*k)/T(k+1)). (End)
0 = a(n)*(a(n+1) + a(n+2) - a(n+3)) + a(n+1)*(a(n+1) + 2*a(n+2) - a(n+3)) + a(n+2)*a(n+2) if n>=0. - Michael Somos, Jan 25 2014
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(k + x)^k*(k + x + 1)^(n-k) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(k + x)^(n-k)*(k + x - 1)^k, for arbitrary x. - Peter Bala, Feb 19 2017
From Peter Luschny, Jun 20 2017: (Start)
a(n) = Sum_{j=0..n} Sum_{k=0..n} binomial(-j-1, -n-1)*abs(Stirling1(j, k)).
a(n) = Sum_{k=0..n} (-1)^(n-k)*Pochhammer(n-k+1, k) (cf. A008279). (End)
a(n) = n! - Sum_{j=0..n-1} binomial(n,j) * a(j). - Alois P. Heinz, Jan 23 2019
Sum_{n>=2} 1/a(n) = A281682. - Amiram Eldar, Nov 09 2020
a(n) = KummerU(-n, -n, -1). - Peter Luschny, May 10 2022
a(n) = (-1)^n*Sum_{k=0..n} Bell(k)*Stirling1(n+1, k+1). - Mélika Tebni, Jul 05 2022

Extensions

Minor edits by M. F. Hasler, Jan 16 2017

A000255 a(n) = n*a(n-1) + (n-1)*a(n-2), a(0) = 1, a(1) = 1.

Original entry on oeis.org

1, 1, 3, 11, 53, 309, 2119, 16687, 148329, 1468457, 16019531, 190899411, 2467007773, 34361893981, 513137616783, 8178130767479, 138547156531409, 2486151753313617, 47106033220679059, 939765362752547227, 19690321886243846661, 432292066866171724421
Offset: 0

Views

Author

Keywords

Comments

a(n) counts permutations of [1,...,n+1] having no substring [k,k+1]. - Len Smiley, Oct 13 2001
Also, for n > 0, determinant of the tridiagonal n X n matrix M such that M(i,i)=i and for i=1..n-1, M(i,i+1)=-1, M(i+1,i)=i. - Mario Catalani (mario.catalani(AT)unito.it), Feb 04 2003
Also, for n > 0, maximal permanent of a nonsingular n X n (0,1)-matrix, which is achieved by the matrix with just n-1 0's, all on main diagonal. [For proof, see next entry.] - W. Edwin Clark, Oct 28 2003
Proof from Richard Brualdi and W. Edwin Clark, Nov 15 2003: Let n >= 4. Take an n X n (0,1)-matrix A which is nonsingular. It has t >= n-1, 0's, otherwise there will be two rows of all 1's. Let B be the matrix obtained from A by replacing t-(n-1) of A's 0's with 1's. Let D be the matrix with all 1's except for 0's in the first n-1 positions on the diagonal. This matrix is easily seen to be non-singular. Now we have per(A) < = per(B) < = per (D), where the first inequality follows since replacing 0's by 1's cannot decrease the permanent and the second from Corollary 4.4 in the Brualdi et al. reference, which shows that per(D) is the maximum permanent of ANY n X n matrix with n -1 0's. Corollary 4.4 requires n >= 4. a(n) for n < 4 can be computed directly.
With offset 1, permanent of (0,1)-matrix of size n X (n+d) with d=1 and n zeros not on a line. This is a special case of Theorem 2.3 of Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, pp. 201-202. - Jaap Spies, Dec 12 2003
Number of fixed-point-free permutations of n+2 that begin with a 2; e.g., for 1234, we have 2143, 2341, 2413, so a(2)=3. Also number of permutations of 2..n+2 that have no agreements with 1..n+1. E.g., for 123 against permutations of 234, we have 234, 342 and 432. Compare A047920. - Jon Perry, Jan 23 2004. [This can be proved by the standard argument establishing that d(n+2) = (n+1)(d(n+1)+d(n)) for derangements A000166 (n+1 choices of where 1 goes, then either 1 is in a transposition, or in a cycle of length at least 3, etc.). - D. G. Rogers, Aug 28 2006]
Stirling transform of A006252(n+1)=[1,1,2,4,14,38,...] is a(n)=[1,3,11,53,309,...]. - Michael Somos, Mar 04 2004
a(n+1) is the sequence of numerators of the self-convergents to 1/(e-2); see A096654. - Clark Kimberling, Jul 01 2004
Euler's interpretation was "fixedpoint-free permutations beginning with 2" and he listed the terms up to 148329 (although he was blind at the time). - Don Knuth, Jan 25 2007
Equals lim_{k->infinity} A153869^k. - Gary W. Adamson, Jan 03 2009
Hankel transform is A059332. - Paul Barry, Apr 22 2009
This sequence appears in the analysis of Euler's divergent series 1 - 1! + 2! - 3! + 4! ... by Lacroix, see Hardy. For information about this and related divergent series see A163940. - Johannes W. Meijer, Oct 16 2009
a(n), n >= 1, enumerates also the ways to distribute n beads, labeled differently from 1 to n, over a set of (unordered) necklaces, excluding necklaces with exactly one bead, and one open cord allowed to have any number of beads. Each beadless necklace as well as the beadless cord contributes a factor 1 in the counting, e.g., a(0):=1*1=1. There are k! possibilities for the cord with k>=0 beads, which means that the two ends of the cord should be considered as fixed, in short: a fixed cord. This produces for a(n) the exponential (aka binomial) convolution of the sequences {n!=A000142(n)} and the subfactorials {A000166(n)}.
See the formula below. Alternatively, the e.g.f. for this problem is seen to be (exp(-x)/(1-x))*(1/(1-x)), namely the product of the e.g.f.s for the subfactorials (from the unordered necklace problem, without necklaces with exactly one bead) and the factorials (from the fixed cord problem). Therefore the recurrence with inputs holds also. a(0):=1. This comment derives from a family of recurrences found by Malin Sjodahl for a combinatorial problem for certain quark and gluon diagrams (Feb 27 2010). - Wolfdieter Lang, Jun 02 2010
a(n) = (n-1)a(n-1) + (n-2)a(n-2) gives the same sequence offset by a 1. - Jon Perry, Sep 20 2012
Also, number of reduced 2 X (n+2) Latin rectangles. - A.H.M. Smeets, Nov 03 2013
Second column of Euler's difference table (second diagonal in example of A068106). - Enrique Navarrete, Dec 13 2016
If we partition the permutations of [n+2] in A000166 according to their starting digit, we will get (n+1) equinumerous classes each of size a(n) (the class starting with the digit 1 is empty since no derangement starts with 1). Hence, A000166(n+2)=(n+1)*a(n), so a(n) is the size of each nonempty class of permutations of [n+2] in A000166. For example, for n=3 we have 44=4*11 (see link). - Enrique Navarrete, Jan 11 2017
For n >= 1, the number of circular permutations (in cycle notation) on [n+2] that avoid substrings (j,j+2), 1 <= j <= n. For example, for n=2, the 3 circular permutations in S4 that avoid substrings {13,24} are (1234),(1423),(1432). Note that each of these circular permutations represent 4 permutations in one-line notation (see link 2017). - Enrique Navarrete, Feb 15 2017
The sequence a(n) taken modulo a positive integer k is periodic with exact period dividing k when k is even and dividing 2*k when k is odd. This follows from the congruence a(n+k) = (-1)^k*a(n) (mod k) holding for all n and k, which in turn is easily proved by induction making use of the given recurrences. - Peter Bala, Nov 21 2017
Number of permutations of [n] where the k-th fixed points are k-colored and all other points are unicolored. - Alois P. Heinz, Apr 28 2025

Examples

			a(3)=11: 1 3 2 4; 1 4 3 2; 2 1 4 3; 2 4 1 3; 3 2 1 4; 3 2 4 1; 4 1 3 2; 4 2 1 3; 4 3 2 1; 2 4 3 1; 3 1 4 2. The last two correspond to (n-1)*a(n-2) since they contain a [j,n+1,j+1].
Cord-necklaces problem. For n=4 one considers the following weak two part compositions of 4: (4,0), (2,2), (1,3), and (0,4), where (3,1) does not appear because there are no necklaces with 1 bead. These compositions contribute respectively 4!*1, (binomial(4,2)*2)*sf(2), (binomial(4,1)*1)*sf(3), and 1*sf(4) with the subfactorials sf(n):=A000166(n) (see the necklace comment there). This adds up as 24 + 6*2 + 4*2 + 9 = 53 = a(4). - _Wolfdieter Lang_, Jun 02 2010
G.f. = 1 + x + 3*x^2 + 11*x^3 + 53*x^4 + 309*x^5 + 2119*x^6 + 16687*x^7 + ...
		

References

  • Richard A. Brualdi and Herbert J. Ryser, Combinatorial Matrix Theory, Camb. Univ. Press, 1991, Section 7.2, p. 202.
  • Charalambos A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 179, Table 5.4 and p. 177 (5.1).
  • CRC Handbook of Combinatorial Designs, 1996, p. 104.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, pp. 263-264. See Table 7.5.1, row 0; also Table 7.6.1, row 0.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 188.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. Ya. Vilenkin, Combinatorics, pp. 54 - 56, Academic Press, 1971. Caravan in the Desert, E_n = a(n-1), n >= 1.

Crossrefs

Row sums of triangle in A046740. A diagonal of triangle in A068106.
A052655 gives occurrence count for non-singular (0, 1)-matrices with maximal permanent, A089475 number of different values of permanent, A089480 occurrence counts for permanents all non-singular (0, 1)-matrices, A087982, A087983.
A diagonal in triangle A010027.
a(n) = A086764(n+1,1).

Programs

  • Haskell
    a000255 n = a000255_list !! n
    a000255_list = 1 : 1 : zipWith (+) zs (tail zs) where
       zs = zipWith (*) [1..] a000255_list
    -- Reinhard Zumkeller, Dec 05 2011
    
  • Magma
    I:=[1, 3]; [1] cat  [n le 2 select I[n] else n*Self(n-1)+(n-1)*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 09 2018
  • Maple
    a := n -> hypergeom([2,-n], [], 1)*(-1)^n:
    seq(simplify(a(n)), n=0..19); # Peter Luschny, Sep 20 2014
    seq(simplify(KummerU(-n, -n-1, -1)), n=0..21); # Peter Luschny, May 10 2022
  • Mathematica
    c = CoefficientList[Series[Exp[ -z]/(1 - z)^2, {z, 0, 30}], z]; For[n = 0, n < 31, n++; Print[c[[n]]*(n - 1)! ]]
    Table[Subfactorial[n] + Subfactorial[n + 1], {n, 0, 20}] (* Zerinvary Lajos, Jul 09 2009 *)
    RecurrenceTable[{a[n]==n a[n-1]+(n-1)a[n-2],a[0]==1,a[1]==1},a[n], {n,20}] (* Harvey P. Dale, May 10 2011 *)
    a[ n_] := If[ n < 0, 0, Round[ n! (n + 2) / E]] (* Michael Somos, Jun 01 2013 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ -x] / (1 - x)^2, {x, 0, n}]] (* Michael Somos, Jun 01 2013 *)
    a[ n_] := If[ n < 0, 0, (-1)^n HypergeometricPFQ[ {- n, 2}, {}, 1]] (* Michael Somos, Jun 01 2013 *)
    sa[k_Integer]/;k>=2 := SparseArray[{{i_, i_} -> i, Band[{2, 1}] -> -1, {i_, j_} /; (i == j - 1) :> i}, {k, k}]; {1, 1}~Join~Array[Det[sa[#]] &, 20, 2] (* Shenghui Yang, Oct 15 2024 *)
  • PARI
    {a(n) = if( n<0, 0, contfracpnqn( matrix( 2, n, i, j, j - (i==1)))[1, 1])};
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( -x + x * O(x^n)) / (1 - x)^2, n))};
    
  • Sage
    from sage.combinat.sloane_functions import ExtremesOfPermanentsSequence2
    e = ExtremesOfPermanentsSequence2()
    it = e.gen(1,1,1)
    [next(it) for i in range(20)]
    # Zerinvary Lajos, May 15 2009
    

Formula

E.g.f.: exp(-x)/(1-x)^2.
a(n) = Sum_{k=0..n} (-1)^k * (n-k+1) * n!/k!. - Len Smiley
Inverse binomial transform of (n+1)!. - Robert A. Stump (bee_ess107(AT)yahoo.com), Dec 09 2001
a(n-2) = !n/(n - 1) where !n is the subfactorial of n, A000166(n). - Lekraj Beedassy, Jun 18 2002
a(n) = floor((1/e)*n!*(n+2)+1/2). - Benoit Cloitre, Jan 15 2004
Apparently lim_{n->infinity} log(n) - log(a(n))/n = 1. - Gerald McGarvey, Jun 12 2004
a(n) = (n*(n+2)*a(n-1) + (-1)^n)/(n+1) for n >= 1, a(0)=1. See the Charalambides reference.
a(n) = GAMMA(n+3,-1)*exp(-1)/(n+1) (incomplete Gamma function). - Mark van Hoeij, Nov 11 2009
a(n) = A000166(n) + A000166(n+1).
A002469(n) = (n-2)*a(n-1) + A000166(n). - Gary W. Adamson, Apr 17 2009
If we take b(n) = (-1)^(n+1)*a(n) for n > 0, then for n > 1 the arithmetic mean of the first n terms is -b(n-1). - Franklin T. Adams-Watters, May 20 2010
a(n) = hypergeometric([2,-n],[],1)*(-1)^n = KummerU(2,3+n,-1)*(-1)^n. See the Abramowitz-Stegun handbook (for the reference see e.g. A103921) p. 504, 13.1.10, and for the recurrence p. 507, 13.4.16. - Wolfdieter Lang, May 20 2010
a(n) = n!*(1 + Sum_{k=0..n-2} sf(n-k)/(n-k)!) with the subfactorials sf(n):= A000166(n) (this follows from the exponential convolution). - Wolfdieter Lang, Jun 02 2010
a(n) = 1/(n+1)*floor(((n+1)!+1)/e). - Gary Detlefs, Jul 11 2010
a(n) = (Subfactorial(n+2))/(n+1). - Alexander R. Povolotsky, Jan 26 2011
G.f.: 1/(1-x-2x^2/(1-3x-6x^2/(1-5x-12x^2/(1-7x-20x^2/(1-.../(1-(2n+1)x-(n+1)(n+2)x^2/(1-... (continued fraction). - Paul Barry, Apr 11 2011
G.f.: hypergeom([1,2],[],x/(x+1))/(x+1). - Mark van Hoeij, Nov 07 2011
From Sergei N. Gladkovskii, Sep 24 2012 - Feb 05 2014: (Start)
Continued fractions:
E.g.f. 1/E(0) where E(k) = 1 - 2*x/(1 + x/(2 - x - 2/(1 + x*(k+1)/E(k+1)))).
G.f.: S(x)/x - 1/x = Q(0)/x - 1/x where S(x) = Sum_{k>=0} k!*(x/(1+x))^k, Q(k) = 1 + (2*k + 1)*x/(1 + x - 2*x*(1+x)*(k+1)/(2*x*(k+1) + (1+x)/Q(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 + x - x*(k+2)/(1 - x*(k+1)/Q(k+1)).
G.f.: 1/x/Q(0) where Q(k) = 1/x - (2*k+1) - (k+2)*(k+1)/Q(k+1).
G.f.: (1+x)/(x*Q(0)) - 1/x where Q(k) = 1 - 2*k*x - x^2*(k + 1)^2/Q(k+1).
G.f.: 2/x/G(0) - 1/x where G(k) = 1 + 1/(1 - x*(2*k+2)/(x*(2*k+1) - 1 + x*(2*k+2)/ G(k+1))).
G.f.: ((Sum_{k>=0} k!*(x/(1+x))^k) - 1)/x = Q(0)/(2*x) - 1/x where Q(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + (1+x)/Q(k+1))).
G.f.: W(0) where W(k) = 1 - x*(k+1)/(x*(k+1) - 1/(1 - x*(k+2)/(x*(k+1) - 1/W(k+1)))).
G.f.: G(0)/(1-x) where G(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - (1-x*(1+2*k))*(1-x*(3+2*k))/G(k+1)). (End)
From Peter Bala, Sep 20 2013: (Start)
The sequence b(n) := n!*(n + 2) satisfies the defining recurrence for a(n) but with the starting values b(0) = 2 and b(1) = 3. This leads to the finite continued fraction expansion a(n) = n!*(n+2)*( 1/(2 + 1/(1 + 1/(2 + 2/(3 + ... + (n-1)/n)))) ), valid for n >= 2.
Also a(n) = n!*(n+2)*( Sum_{k = 0..n} (-1)^k/(k+2)! ). Letting n -> infinity gives the infinite continued fraction expansion 1/e = 1/(2 + 1/(1 + 1/(2 + 2/(3 + ... + (n-1)/(n + ...)))) ) due to Euler. (End)
0 = a(n)*(+a(n+1) + 2*a(n+2) - a(n+3)) + a(n+1)*(+2*a(n+2) - a(n+3)) + a(n+2)*(+a(n+2)) if n >= 0. - Michael Somos, May 06 2014
a(n-3) = (n-2)*A000757(n-2) + (2*n-5)*A000757(n-3) + (n-3)*A000757(n-4), n >= 3. - Luis Manuel Rivera Martínez, Mar 14 2015
a(n) = A000240(n) + A000240(n+1), n >= 1. Let D(n) = A000240(n) be the permutations of [n] having no substring in {12,23,...,(n-1)n,n1}. Let d(n) = a(n-1) be the permutations of [n] having no substring in {12,23,...,(n-1)n}. Let d_n1 = A000240(n-1) be the permutations of [n] that have the substring n1 but no substring in {12,23,...,(n-1)n}. Then the link "Forbidden Patterns" shows the bijection d_n1 ~ D(n-1) and since dn = d_n1 U D(n), we get dn = D(n-1) U D(n). Taking cardinalities we get the result for n-1, i.e., a(n-1) = A000240(n-1) + A000240(n). For example, for n=4 in this last equation, we get a(4) = 11 = 3+8. - Enrique Navarrete, Jan 16 2017
a(n) = (n+1)!*hypergeom([-n], [-n-1], -1). - Peter Luschny, Nov 02 2018
Sum_{n>=0} (-1)^n*n!/(a(n)*a(n+1)) = e - 2 (Herzig, 1998). - Amiram Eldar, Mar 07 2022
a(n) = KummerU(-n, -n - 1, -1). - Peter Luschny, May 10 2022

A008290 Triangle T(n,k) of rencontres numbers (number of permutations of n elements with k fixed points).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 9, 8, 6, 0, 1, 44, 45, 20, 10, 0, 1, 265, 264, 135, 40, 15, 0, 1, 1854, 1855, 924, 315, 70, 21, 0, 1, 14833, 14832, 7420, 2464, 630, 112, 28, 0, 1, 133496, 133497, 66744, 22260, 5544, 1134, 168, 36, 0, 1, 1334961, 1334960, 667485, 222480, 55650, 11088, 1890, 240, 45, 0, 1
Offset: 0

Views

Author

Keywords

Comments

This is a binomial convolution triangle (Sheffer triangle) of the Appell type: (exp(-x)/(1-x),x), i.e., the e.g.f. of column k is (exp(-x)/(1-x))*(x^k/k!). See the e.g.f. given by V. Jovovic below. - Wolfdieter Lang, Jan 21 2008
The formula T(n,k) = binomial(n,k)*A000166(n-k), with the derangements numbers (subfactorials) A000166 (see also the Charalambides reference) shows the Appell type of this triangle. - Wolfdieter Lang, Jan 21 2008
T(n,k) is the number of permutations of {1,2,...,n} having k pairs of consecutive right-to-left minima (0 is considered a right-to-left minimum for each permutation). Example: T(4,2)=6 because we have 1243, 1423, 4123, 1324, 3124 and 2134; for example, 1324 has right-to-left minima in positions 0-1,3-4 and 2134 has right-to-left minima in positions 0,2-3-4, the consecutive ones being joined by "-". - Emeric Deutsch, Mar 29 2008
T is an example of the group of matrices outlined in the table in A132382--the associated matrix for the sequence aC(0,1). - Tom Copeland, Sep 10 2008
A refinement of this triangle is given by A036039. - Tom Copeland, Nov 06 2012
This triangle equals (A211229(2*n,2*k)) n,k >= 0. - Peter Bala, Dec 17 2014

Examples

			exp((y-1)*x)/(1-x) = 1 + y*x + (1/2!)*(1+y^2)*x^2 + (1/3!)*(2 + 3*y + y^3)*x^3 + (1/4!)*(9 + 8*y + 6*y^2 + y^4)*x^4 + (1/5!)*(44 + 45*y + 20*y^2 + 10*y^3 + y^5)*x^5 + ...
Triangle begins:
       1
       0      1
       1      0     1
       2      3     0     1
       9      8     6     0    1
      44     45    20    10    0    1
     265    264   135    40   15    0   1
    1854   1855   924   315   70   21   0  1
   14833  14832  7420  2464  630  112  28  0 1
  133496 133497 66744 22260 5544 1134 168 36 0 1
...
From _Peter Bala_, Feb 13 2017: (Start)
The infinitesimal generator has integer entries given by binomial(n,k)*(n-k-1)! for n >= 2 and 0 <= k <= n-2 and begins
   0
   0  0
   1  0  0
   2  3  0  0
   6  8  6  0 0
  24 30 20 10 0 0
...
It is essentially A238363 (unsigned and omitting the main diagonal), A211603 (with different offset) and appears to be A092271, again without the main diagonal. (End)
		

References

  • Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 173, Table 5.2 (without row n=0 and column k=0).
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 194.
  • Arnold Kaufmann, Introduction à la combinatorique en vue des applications, Dunod, Paris, 1968. See p. 92.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.

Crossrefs

Mirror of triangle A098825.
Cf. A080955.
Cf. A000012, A000142 (row sums), A000354.
Cf. A170942. Sub-triangle of A211229.
T(2n,n) gives A281262.

Programs

  • Haskell
    a008290 n k = a008290_tabl !! n !! k
    a008290_row n = a008290_tabl !! n
    a008290_tabl = map reverse a098825_tabl
    -- Reinhard Zumkeller, Dec 16 2013
  • Maple
    T:= proc(n,k) T(n, k):= `if`(k=0, `if`(n<2, 1-n, (n-1)*
          (T(n-1, 0)+T(n-2, 0))), binomial(n, k)*T(n-k, 0))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Mar 15 2013
  • Mathematica
    a[0] = 1; a[1] = 0; a[n_] := Round[n!/E] /; n >= 1 size = 8; Table[Binomial[n, k]a[n - k], {n, 0, size}, {k, 0, n}] // TableForm (* Harlan J. Brothers, Mar 19 2007 *)
    T[n_, k_] := Subfactorial[n-k]*Binomial[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2017 *)
    T[n_, k_] := If[n<1, Boole[n==0 && k==0], T[n, k] = T[n-1, k-1] + T[n-1, k]*(n-1-k) + T[n-1, k+1]*(k+1)]; (* Michael Somos, Sep 13 2024 *)
    T[0, 0]:=1; T[n_, 0]:=T[n, 0]=n  T[n-1, 0]+(-1)^n; T[n_, k_]:=T[n, k]=n/k T[n-1, k-1];
    Flatten@Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Oliver Seipel, Nov 26 2024 *)
  • PARI
    {T(n, k) = if(k<0 || k>n, 0, n!/k! * sum(i=0, n-k, (-1)^i/i!))}; /* Michael Somos, Apr 26 2000 */
    

Formula

T(n, k) = T(n-1, k)*n + binomial(n, k)*(-1)^(n-k) = T(n, k-1)/k + binomial(n, k)*(-1)^(n-k)/(n-k+1) = T(n-1, k-1)*n/k = T(n-k, 0)*binomial(n, k) = A000166(n-k)*binomial(n,k) [with T(0, 0) = 1]; so T(n, n) = 1, T(n, n-1) = 0, T(n, n-2) = n*(n-1)/2 for n >= 0.
Sum_{k=0..n} T(n, k) = Sum_{k=0..n} k * T(n, k) = n! for all n > 0, n, k integers. - Wouter Meeussen, May 29 2001
From Vladeta Jovovic, Aug 12 2002: (Start)
O.g.f. for k-th column: (1/k!)*Sum_{i>=k} i!*x^i/(1+x)^(i+1).
O.g.f. for k-th row: k!*Sum_{i=0..k} (-1)^i/i!*(1-x)^i. (End)
E.g.f.: exp((y-1)*x)/(1-x). - Vladeta Jovovic, Aug 18 2002
E.g.f. for number of permutations with exactly k fixed points is x^k/(k!*exp(x)*(1-x)). - Vladeta Jovovic, Aug 25 2002
Sum_{k=0..n} T(n, k)*x^k is the permanent of the n X n matrix with x's on the diagonal and 1's elsewhere; for x = 0, 1, 2, 3, 4, 5, 6 see A000166, A000142, A000522, A010842, A053486, A053487, A080954. - Philippe Deléham, Dec 12 2003; for x = 1+i see A009551 and A009102. - John M. Campbell, Oct 11 2011
T(n, k) = Sum_{j=0..n} A008290(n, j)*k^(n-j) is the permanent of the n X n matrix with 1's on the diagonal and k's elsewhere; for k = 0, 1, 2 see A000012, A000142, A000354. - Philippe Deléham, Dec 13 2003
T(n,k) = Sum_{j=0..n} (-1)^(j-k)*binomial(j,k)*n!/j!. - Paul Barry, May 25 2006
T(n,k) = (n!/k!)*Sum_{j=0..n-k} ((-1)^j)/j!, 0 <= k <= n. From the Appell type of the triangle and the subfactorial formula.
T(n,0) = n*Sum_{j=0..n-1} (j/(j+1))*T(n-1,j), T(0,0)=1. From the z-sequence of this Sheffer triangle z(j)=j/(j+1) with e.g.f. (1-exp(x)*(1-x))/x. See the W. Lang link under A006232 for Sheffer a- and z-sequences. - Wolfdieter Lang, Jan 21 2008
T(n,k) = (n/k)*T(n-1,k-1) for k >= 1. See above. From the a-sequence of this Sheffer triangle a(0)=1, a(n)=0, n >= 1 with e.g.f. 1. See the W. Lang link under A006232 for Sheffer a- and z-sequences. - Wolfdieter Lang, Jan 21 2008
From Henk P. J. van Wijk, Oct 29 2012: (Start)
T(n,k) = T(n-1,k)*(n-1-k) + T(n-1,k+1)*(k+1) for k=0 and
T(n,k) = T(n-1,k-1) + T(n-1,k)*(n-1-k) + T(n-1,k+1)*(k+1) for k>=1.
(End)
T(n,k) = A098825(n,n-k). - Reinhard Zumkeller, Dec 16 2013
Sum_{k=0..n} k^2 * T(n, k) = 2*n! if n > 1. - Michael Somos, Jun 06 2017
From Tom Copeland, Jul 26 2017: (Start)
The lowering and raising operators of this Appell sequence of polynomials P(n,x) are L = d/dx and R = x + d/dL log[exp(-L)/(1-L)] = x-1 + 1/(1-L) = x + L + L^2 - ... such that L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x).
P(n,x) = (1-L)^(-1) exp(-L) x^n = (1+L+L^2+...)(x-1)^n = n! Sum_{k=0..n} (x-1)^k / k!.
The formalism of A133314 applies to the pair of entries A008290 and A055137.
The polynomials of this pair P_n(x) and Q_n(x) are umbral compositional inverses; i.e., P_n(Q.(x)) = x^n = Q_n(P.(x)), where, e.g., (Q.(x))^n = Q_n(x).
For more on the infinitesimal generator, noted by Bala below, see A238385. (End)
Sum_{k=0..n} k^m * T(n,k) = A000110(m)*n! if n >= m. - Zhujun Zhang, May 24 2019
Sum_{k=0..n} (k+1) * T(n,k) = A098558(n). - Alois P. Heinz, Mar 11 2022
From Alois P. Heinz, May 20 2023: (Start)
Sum_{k=0..n} (-1)^k * T(n,k) = A000023(n).
Sum_{k=0..n} (-1)^k * k * T(n,k) = A335111(n). (End)
T(n,k) = A145224(n,k)+A145225(n,k), refined by even and odd perms. - R. J. Mathar, Jul 06 2023

Extensions

Comments and more terms from Michael Somos, Apr 26 2000 and Christian G. Bower, Apr 26 2000

A008291 Triangle of rencontres numbers.

Original entry on oeis.org

1, 2, 3, 9, 8, 6, 44, 45, 20, 10, 265, 264, 135, 40, 15, 1854, 1855, 924, 315, 70, 21, 14833, 14832, 7420, 2464, 630, 112, 28, 133496, 133497, 66744, 22260, 5544, 1134, 168, 36, 1334961, 1334960, 667485, 222480, 55650, 11088, 1890, 240, 45, 14684570
Offset: 2

Views

Author

Keywords

Comments

T(n,k) = number of permutations of n elements with k fixed points.
T(n,n-1)=0 and T(n,n)=1 are omitted from the array. - Geoffrey Critzer, Nov 28 2011.

Examples

			Triangle begins:
       1
       2      3
       9      8     6
      44     45    20    10
     265    264   135    40   15
    1854   1855   924   315   70   21
   14833  14832  7420  2464  630  112  28
  133496 133497 66744 22260 5544 1134 168 36
  ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 194.
  • Kaufmann, Arnold. "Introduction a la combinatorique en vue des applications." Dunod, Paris, 1968. See p. 92.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.

Crossrefs

Row sums give A033312.
Cf. A320582.

Programs

  • Maple
    T:= proc(n, k) T(n, k):= `if`(k=0, `if`(n<2, 1-n, (n-1)*
          (T(n-1, 0)+T(n-2, 0))), binomial(n, k)*T(n-k, 0))
        end:
    seq(seq(T(n, k), k=0..n-2), n=2..12);  # Alois P. Heinz, Mar 17 2013
  • Mathematica
    Prepend[Flatten[f[list_]:=Select[list,#>1&];Map[f,Drop[Transpose[Table[d = Exp[-x]/(1 - x);Range[0, 10]! CoefficientList[Series[d x^k/k!, {x, 0, 10}],x], {k, 0, 8}]], 3]]], 1] (* Geoffrey Critzer, Nov 28 2011 *)
  • PARI
    T(n, k)= if(k<0 || k>n, 0, n!/k!*sum(i=0, n-k, (-1)^i/i!))

Formula

T(n,k) = binomial(n,k)*A000166(n-k) = A008290(n,k).
E.g.f. for column k: (x^k/k!)(exp(-x)/(1-x)). - Geoffrey Critzer, Nov 28 2011
Row generating polynomials appear to be given by -1 + sum {k = 0..n} (-1)^(n+k)*C(n,k)*(1+k*x)^(n-k)*(2+(k-1)*x)^k. - Peter Bala, Dec 29 2011

Extensions

Comments and more terms from Michael Somos, Apr 26 2000

A170942 Take the permutations of lengths 1, 2, 3, ... arranged lexicographically, and replace each permutation with the number of its fixed points.

Original entry on oeis.org

1, 2, 0, 3, 1, 1, 0, 0, 1, 4, 2, 2, 1, 1, 2, 2, 0, 1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 1, 2, 0, 0, 5, 3, 3, 2, 2, 3, 3, 1, 2, 1, 1, 2, 2, 1, 3, 2, 1, 1, 1, 2, 2, 3, 1, 1, 3, 1, 1, 0, 0, 1, 2, 0, 1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 1, 2, 0, 0, 2, 0, 1, 0, 0, 1, 3, 1, 2, 1, 1, 2, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Neven Juric (neven.juric(AT)apis-it.hr) and N. J. A. Sloane, Feb 23 2010

Keywords

Comments

Length of n-th row = sum of n-th row = n!; number of zeros in n-th row = A000166(n); number of positive terms in n-th row = A002467(n). [Reinhard Zumkeller, Mar 29 2012]

Examples

			123,132,213,231,312,321 (corresponding to 3rd row of triangle A030298) have respectively 3,1,1,0,0,1 fixed points.
		

Crossrefs

Programs

  • Haskell
    import Data.List (permutations, sort)
    a170942 n k = a170942_tabf !! (n-1) (k-1)
    a170942_row n = map fps $ sort $ permutations [1..n] where
       fps perm = sum $ map fromEnum $ zipWith (==) perm [1..n]
    a170942_tabf = map a170942_row [1..]
    -- Reinhard Zumkeller, Mar 29 2012

Extensions

a(36)-a(105) from John W. Layman, Feb 23 2010
Keyword tabf added by Reinhard Zumkeller, Mar 29 2012

A320955 Square array read by ascending antidiagonals: A(n, k) (n >= 0, k >= 0) = Sum_{j=0..n-1} (!j/j!)*((n - j)^k/(n - j)!) if k > 0 and 1 if k = 0. Here !n denotes the subfactorial of n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 4, 1, 0, 1, 1, 2, 5, 8, 1, 0, 1, 1, 2, 5, 14, 16, 1, 0, 1, 1, 2, 5, 15, 41, 32, 1, 0, 1, 1, 2, 5, 15, 51, 122, 64, 1, 0, 1, 1, 2, 5, 15, 52, 187, 365, 128, 1, 0, 1, 1, 2, 5, 15, 52, 202, 715, 1094, 256, 1, 0
Offset: 0

Views

Author

Peter Luschny, Nov 05 2018

Keywords

Comments

Arndt and Sloane (see the link and A278984) identify the sequence to give "the number of words of length n over an alphabet of size b that are in standard order" and provide the formula Sum_{j = 1..b} Stirling_2(n, j) assuming b >= 1 and j >= 1. Compared to the array as defined here this misses the first row and the first column of our array.
The method used here is the special case of a general method described in A320956 applied to the function exp. For applications to other functions see the cross references.
A(k,n) is the number of color patterns (set partitions) for an oriented row of length n using up to k colors (subsets). Two color patterns are equivalent if the colors are permuted. For A(3,4) = 14, the six achiral patterns are AAAA, AABB, ABAB, ABBA, ABBC, and ABCA; the eight chiral patterns are the four chiral pairs AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB. - Robert A. Russell, Nov 10 2018

Examples

			Array starts:
n\k   0  1  2  3   4   5    6    7     8      9  ...
----------------------------------------------------
[0]   1, 0, 0, 0,  0,  0,   0,   0,    0,     0, ...  A000007
[1]   1, 1, 1, 1,  1,  1,   1,   1,    1,     1, ...  A000012
[2]   1, 1, 2, 4,  8, 16,  32,  64,  128,   256, ...  A011782
[3]   1, 1, 2, 5, 14, 41, 122, 365, 1094,  3281, ...  A124302
[4]   1, 1, 2, 5, 15, 51, 187, 715, 2795, 11051, ...  A124303
[5]   1, 1, 2, 5, 15, 52, 202, 855, 3845, 18002, ...  A056272
[6]   1, 1, 2, 5, 15, 52, 203, 876, 4111, 20648, ...  A056273, ?A284727
[7]   1, 1, 2, 5, 15, 52, 203, 877, 4139, 21110, ...
[8]   1, 1, 2, 5, 15, 52, 203, 877, 4140, 21146, ...
[9]   1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, ...
----------------------------------------------------
Seen as a triangle given by the descending antidiagonals:
[0]             1
[1]            0, 1
[2]          0, 1, 1
[3]        0, 1, 1, 1
[4]       0, 1, 2, 1, 1
[5]     0, 1, 4, 2, 1, 1
[6]    0, 1, 8, 5, 2, 1, 1
[7]  0, 1, 16, 14, 5, 2, 1, 1
		

Crossrefs

Antidiagonal sums (and row sums of the triangle): A320964.
Cf. this sequence (exp), A320962 (log(x+1)), A320956 (sec+tan), A320958 (arcsin), A320959 (arctanh).
Cf. A320750 (unoriented), A320751 (chiral), A305749 (achiral).

Programs

  • Maple
    A := (n, k) -> if k = 0 then 1 else add(A008290(n, n-j)*(n-j)^k, j=0..n-1)/n! fi:
    seq(lprint(seq(A(n, k), k=0..9)), n=0..9); # Prints the array row-wise.
    seq(seq(A(n-k, k), k=0..n), n=0..11); # Gives the array as listed.
  • Mathematica
    T[n_, 0] := 1; T[n_, k_] := Sum[(Subfactorial[j]/Factorial[j])((n - j)^k/(n - j)!), {j, 0, n - 1}]; Table[T[n - k, k], {n, 0, 11}, {k, 0, n}] // Flatten
    Table[Sum[StirlingS2[k, j], {j, 0, n-k}], {n, 0, 11}, {k, 0, n}] // Flatten (* Robert A. Russell, Nov 10 2018 *)

Formula

A(n, k) = (1/n!)*Sum_{j=0..n-1} A008290(n, n-j)*(n-j)^k if k > 0.
If one drops the special case A(n, 0) = 1 from the definition then column 0 becomes Sum_{k=0..n} (-1)^k/k! = A103816(n)/A053556(n).
Row n is given for k >= 1 by a_n(k), where
a_0(k) = 0^k/0!.
a_1(k) = 1^k/1!.
a_2(k) = (2^k)/2!.
a_3(k) = (3^k + 3)/3!.
a_4(k) = (6*2^k + 4^k + 8)/4!.
a_5(k) = (20*2^k + 10*3^k + 5^k + 45)/5!.
a_6(k) = (135*2^k + 40*3^k + 15*4^k + 6^k + 264)/6!.
a_7(k) = (924*2^k + 315*3^k + 70*4^k + 21*5^k + 7^k + 1855)/7!.
a_8(k) = (7420*2^k + 2464*3^k + 630*4^k + 112*5^k + 28*6^k + 8^k + 14832)/8!.
Note that the coefficients of the generating functions a_n are the recontres numbers A000240, A000387, A000449, ...
Rewriting the formulas with exponential generating functions for the rows we have egf(n) = Sum_{k=0..n} !k*binomial(n,k)*exp(x*(n-k)) and A(n, k) = (k!/n!)*[x^k] egf(n). In this formulation no special rule for the case k = 0 is needed.
The rows converge to the Bell numbers. Convergence here means that for every fixed k the terms in column k differ from A000110(k) only for finitely many indices.
A(n, n) are the Bell numbers A000110(n) for n >= 0.
Let S(n, k) = Bell(n+k+1) - A(n, k+n+1) for n >= 0 and k >= 0, then the square array S(n, k) read by descending antidiagonals equals provable the triangle A137650 and equals empirical the transpose of the array A211561.

A009574 Expansion of e.g.f. sinh(log(1+x))*exp(x).

Original entry on oeis.org

0, 1, 1, 3, -2, 25, -129, 931, -7412, 66753, -667475, 7342291, -88107414, 1145396473, -16035550517, 240533257875, -3848532125864, 65425046139841, -1177650830516967, 22375365779822563, -447507315596451050, 9397653627525472281, -206748379805560389929
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [(&+[(k+2)*(-1)^(n-k+1)/Factorial(k): k in [0..n-1]])*( Factorial(n)/2): n in [1..30]]; // G. C. Greubel, Jan 21 2018
  • Maple
    seq(n*(1-(-1)^n*A000166(n-1))/2,n=0..20); # Peter Luschny, Dec 30 2016
  • Mathematica
    CoefficientList[Series[(E^x*x*(2 + x))/(2*(1 + x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 23 2015 *)
    With[{nn=20},CoefficientList[Series[Sinh[Log[1+x]]*Exp[x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 23 2015 *)
    Table[(-1)^n*n*((-1)^n-Subfactorial[n-1])/2,{n,0,20}] (* Peter Luschny, Dec 30 2016 *)
  • Maxima
    a(n):=n!/2*sum((k+2)*(-1)^(n-k+1)/k!,k,0,n-1); /* Vladimir Kruchinin, Dec 30 2016 */
    
  • PARI
    x='x+O('x^30); concat([0], Vec(serlaplace(sinh(log(1+x))*exp(x)))) \\ G. C. Greubel, Jan 21 2018
    
  • Sage
    def A009574():
        a, n = 0, 0
        while True:
            yield a//2
            n += 1
            a = n*(n+1-a)
    a = A009574(); [next(a) for  in (0..20)] # _Peter Luschny, Dec 30 2016
    

Formula

a(n) ~ n! * (-1)^(n+1) / (2*exp(1)). - Vaclav Kotesovec, Jan 23 2015
a(n) = n!/2*Sum_{k=0..n-1}(k+2)*(-1)^(n-k+1)/k!. - Vladimir Kruchinin, Dec 30 2016
a(n) = n*(1-(-1)^n*SF(n-1))/2, where SF(n) is the subfactorial A000166. - Peter Luschny, Dec 30 2016
From Seiichi Manyama, Dec 31 2023: (Start)
a(0) = 0; a(n) = -n*a(n-1) + binomial(n+1,2).
E.g.f.: x * (1+x/2) * exp(x) / (1+x). (End)

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
First Mathematica program replaced by Harvey P. Dale, Mar 23 2015

A368724 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) = n! * Sum_{j=0..n} (-1)^(n-j) * j^k/j!.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 1, 0, -2, 0, 1, 2, 3, 9, 0, 1, 6, 3, -8, -44, 0, 1, 14, 9, 4, 45, 265, 0, 1, 30, 39, 28, 5, -264, -1854, 0, 1, 62, 153, 100, -15, 6, 1855, 14833, 0, 1, 126, 543, 412, 125, 306, 7, -14832, -133496, 0, 1, 254, 1809, 1924, 1065, 546, -1799, 8, 133497, 1334961
Offset: 0

Views

Author

Seiichi Manyama, Jan 04 2024

Keywords

Examples

			Square array begins:
    1,    0, 0,   0,   0,    0,     0, ...
    0,    1, 1,   1,   1,    1,     1, ...
    1,    0, 2,   6,  14,   30,    62, ...
   -2,    3, 3,   9,  39,  153,   543, ...
    9,   -8, 4,  28, 100,  412,  1924, ...
  -44,   45, 5, -15, 125, 1065,  6005, ...
  265, -264, 6, 306, 546, 1386, 10626, ...
		

Crossrefs

Columns k=0..5 give A182386, (-1)^(n-1) * A000240(n), A001477, A368716, A368717, A368718.
Main diagonal gives A368725.
Cf. A337085.

Programs

  • PARI
    T(n,k) = n!*sum(j=0, n, (-1)^(n-j)*j^k/j!);

Formula

T(0,k) = 0^k and T(n,k) = n^k - n * T(n-1,k) for n>0.
E.g.f. of column k: B_k(x) * exp(x) / (1+x), where B_n(x) = Bell polynomials.

A065087 a(n) = A000166(n)*binomial(n+1,2).

Original entry on oeis.org

0, 0, 3, 12, 90, 660, 5565, 51912, 533988, 6007320, 73422855, 969181620, 13744757598, 208462156812, 3367465610145, 57727981888080, 1046800738237320, 20020064118788592, 402756584036805963, 8502638996332570140, 187953072550509445410, 4341715975916768188740
Offset: 0

Views

Author

N. J. A. Sloane, Nov 10 2001

Keywords

Comments

a(n) is also the number of permutations of [2n-1] having n-1 isolated fixed points (i.e. adjacent entries are not fixed points). Example: a(2)=3 because we have 132, 213, and 321. - Emeric Deutsch, Apr 18 2009

Crossrefs

Equals 3 * A000313(n+2).

Programs

  • Mathematica
    a[n_] := Subfactorial[n]*Binomial[n + 1, 2];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 18 2024 *)

Formula

a(n) = (n/2)*A000240(n+1). - Zerinvary Lajos, Dec 18 2007, corrected Jul 09 2012
a(n) = n * (n+1) * (a(n-1)/(n-1) + (-1)^n/2) for n > 1 - Seiichi Manyama, Jun 24 2018
E.g.f.: exp(-x)*x^2*(3 - 2*x + x^2)/(2*(1 - x)^3). - Ilya Gutkovskiy, Jun 25 2018
Showing 1-10 of 36 results. Next