A337085
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) = n! * Sum_{j=0..n} j^k/j!.
Original entry on oeis.org
1, 0, 2, 0, 1, 5, 0, 1, 4, 16, 0, 1, 6, 15, 65, 0, 1, 10, 27, 64, 326, 0, 1, 18, 57, 124, 325, 1957, 0, 1, 34, 135, 292, 645, 1956, 13700, 0, 1, 66, 345, 796, 1585, 3906, 13699, 109601, 0, 1, 130, 927, 2404, 4605, 9726, 27391, 109600, 986410, 0, 1, 258, 2577, 7804, 15145, 28926, 68425, 219192, 986409, 9864101
Offset: 0
Square array begins:
1, 0, 0, 0, 0, 0, 0, ...
2, 1, 1, 1, 1, 1, 1, ...
5, 4, 6, 10, 18, 34, 66, ...
16, 15, 27, 57, 135, 345, 927, ...
65, 64, 124, 292, 796, 2404, 7804, ...
326, 325, 645, 1585, 4605, 15145, 54645, ...
1957, 1956, 3906, 9726, 28926, 98646, 374526, ...
-
T[n_, k_] := n! * Sum[If[j == k == 0, 1, j^k]/j!, {j, 0, n}]; Table[T[k, n-k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 29 2021 *)
A368718
a(n) = n! * Sum_{k=0..n} (-1)^(n-k) * k^5 / k!.
Original entry on oeis.org
0, 1, 30, 153, 412, 1065, 1386, 7105, -24072, 275697, -2656970, 29387721, -352403820, 4581620953, -64142155518, 962133092145, -15394128425744, 261700184657505, -4710603321945522, 89501463119441017, -1790029262385620340, 37590614510102111241
Offset: 0
-
f:= proc(n) option remember;
- n*procname(n-1)+n^5
end proc:
f(0):= 0:
seq(f(i),i=0..21); # Robert Israel, May 13 2025
-
Table[-5*n + 3*n^3 + n^4 - 2*(-1)^n*n*Subfactorial[n-1], {n, 0, 20}] (* Vaclav Kotesovec, Jul 18 2025 *)
-
my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=0, 5, stirling(5, k, 2)*x^k)*exp(x)/(1+x))))
A368716
a(n) = n! * Sum_{k=0..n} (-1)^(n-k) * k^3 / k!.
Original entry on oeis.org
0, 1, 6, 9, 28, -15, 306, -1799, 14904, -133407, 1335070, -14684439, 176214996, -2290792751, 32071101258, -481066515495, 7697064252016, -130850092279359, 2355301661034294, -44750731559644727, 895014631192902540, -18795307255050944079
Offset: 0
-
f:= proc(n) option remember;
- n*procname(n-1)+n^3
end proc:
f(0):= 0:
seq(f(i),i=0..30); # Robert Israel, May 13 2025
-
Table[n + n^2 + (-1)^n*n*Subfactorial[n-1], {n, 0, 20}] (* Vaclav Kotesovec, Jul 18 2025 *)
-
my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=0, 3, stirling(3, k, 2)*x^k)*exp(x)/(1+x))))
A368717
a(n) = n! * Sum_{k=0..n} (-1)^(n-k) * k^4 / k!.
Original entry on oeis.org
0, 1, 14, 39, 100, 125, 546, -1421, 15464, -132615, 1336150, -14683009, 176216844, -2290790411, 32071104170, -481066511925, 7697064256336, -130850092274191, 2355301661040414, -44750731559637545, 895014631192910900, -18795307255050934419
Offset: 0
-
f:= proc(n) option remember;
- n*procname(n-1)+n^4
end proc:
f(0):= 0:
seq(f(i),i=0..30); # Robert Israel, May 13 2025
-
Table[-n + 2*n^2 + n^3 + (-1)^n*n*Subfactorial[n-1], {n, 0, 20}] (* Vaclav Kotesovec, Jul 18 2025 *)
-
my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=0, 4, stirling(4, k, 2)*x^k)*exp(x)/(1+x))))
A368725
a(n) = n! * Sum_{k=0..n} (-1)^(n-k) * k^n / k!.
Original entry on oeis.org
1, 1, 2, 9, 100, 1065, 10626, 224161, 4598504, 46288017, 2509940710, 84061763841, -1602021820596, 164372205860473, 5216105126641514, -883395389739028095, 79008645559978113616, -1023235751229436800735, -651030746777115881959602, 113943411938145511923004513
Offset: 0
-
Join[{1}, Table[n!*Sum[(-1)^(n-k)*k^n/k!, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Jul 18 2025 *)
-
a(n) = n!*sum(k=0, n, (-1)^(n-k)*k^n/k!);
Showing 1-5 of 5 results.
Comments