A344949 a(n) is the smallest square s > 0 such that s*(2n+1) is a triangular number.
1, 1, 9, 4, 4, 441, 25, 1, 9, 9, 1, 3218436, 49, 1089, 1656369, 16, 16, 225, 46225, 9, 81, 314721, 1, 12217323024, 25, 25, 2427192623025, 1, 2304, 199572129, 121, 400, 81225, 39727809, 4, 36, 36, 4, 736164, 94864, 592900, 4357032433168041, 169, 3025, 3600, 1
Offset: 0
Keywords
Programs
-
Mathematica
Table[k=1;While[!IntegerQ[Sqrt[8k^2(2n+1)+1]],k++];k^2,{n,0,22}] (* Giorgos Kalogeropoulos, Jun 03 2021 *)
-
PARI
a(n) = my(k=1); while (!ispolygonal(k^2*(2*n+1), 3), k++); k^2; \\ Michel Marcus, Jun 06 2021
-
Python
from sympy.solvers.diophantine.diophantine import diop_DN def A344949(n): return min(d[1]**2 for d in diop_DN(4*n+2, 1))//4 # Chai Wah Wu, Jun 21 2021
Comments