cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Ruskin Harding

Ruskin Harding's wiki page.

Ruskin Harding has authored 6 sequences.

A220469 Fibonacci 14-step numbers, a(n) = a(n-1) + a(n-2) + ... + a(n-14).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16383, 32765, 65528, 131052, 262096, 524176, 1048320, 2096576, 4193024, 8385792, 16771072, 33541120, 67080192, 134156288, 268304384, 536592385, 1073152005, 2146238482, 4292345912, 8584429728
Offset: 1

Author

Ruskin Harding, Feb 20 2013

Keywords

Comments

Also called tetradecanacci numbers. In previous similar sequences, a(1),...,a(n-1) have been set equal to zero and a(n)=1. For example, A168084 (Fibonacci 13-step numbers) has 12 0's as the first 12 terms and a(13)=1.

Crossrefs

Cf. A000045 (Fibonacci), A000073 (tribonacci), A000078 (tetranacci), A001591 (pentanacci).

Programs

  • Mathematica
    FibonacciSequence[n_, kMax_] := Module[{a, s}, a = Join[{1}, Table[0, {n - 1}]]; lst = {}; Table[s = Plus @@ a; a = RotateLeft[a]; a[[n]] = s, {k, 1, kMax}]]; FibonacciSequence[14, 50] (* T. D. Noe, Feb 20 2013 *)
    Drop[LinearRecurrence[PadRight[{},14,1],Join[PadRight[{},13,0],{1}],50],13] (* Harvey P. Dale, Feb 25 2013 *)
    LinearRecurrence[{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},{1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096},35] (* Ray Chandler, Aug 03 2015 *)

A220493 Fibonacci 15-step numbers, a(n) = a(n-1) + a(n-2) + ... + a(n-15).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32767, 65533, 131064, 262124, 524240, 1048464, 2096896, 4193728, 8387328, 16774400, 33548288, 67095552, 134189056, 268374016, 536739840, 1073463296, 2146893825, 4293722117, 8587313170
Offset: 1

Author

Ruskin Harding, Feb 20 2013

Keywords

Comments

Also called Pentadecanacci numbers. In previous similar sequences, a(1), ..., a(n-1) have been set equal to zero and a(n)=1. For example, A168084 (Fibonacci 13-step numbers) has 12 0's as the first 12 terms and a(13)=1.

Crossrefs

Cf. A000045 (Fibonacci), A000073 (tribonacci), A000078 (tetranacci), A001591 (pentanacci).

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) = add(a(n-i),i=1..15), seq(a(n)=0,n=-14..0),a(1)=1},a(n),remember):
    map(f, [$1..100]); # Robert Israel, Feb 19 2019
  • Mathematica
    FibonacciSequence[n_, kMax_] := Module[{a, s}, a = Join[{1}, Table[0, {n - 1}]]; lst = {}; Table[s = Plus @@ a; a = RotateLeft[a]; a[[n]] = s, {k, 1, kMax}]]; FibonacciSequence[15, 50] (* T. D. Noe, Feb 20 2013 *)

Formula

G.f.: x/(1-Sum_{k=1..15} x^k). - Robert Israel, Feb 19 2019

A192543 Let r be the largest real zero of x^n - x^(n-1) - x^(n-2) - ... - 1 = 0. Then a(n) is the value of k which satisfies the equation 0.5/10^k < 2 - r < 5/10^k.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22
Offset: 1

Author

Ruskin Harding, Dec 31 2012

Keywords

Comments

Same as A034887 except for the offset and a(1). - T. D. Noe, Feb 11 2013

Examples

			For n = 5, the root is approximately r = 1.96594823. The value of k that satisfies 0.5/10^k < 2-r < 5/10^k is 2 as 0.005 < 0.03405177 < 0.05. So a(5) = 2.
		

Programs

  • PARI
    a(n)=if(n>1, -log(4-2*solve(x=1.5,2,x^n-(1-x^n)/(1-x)))\log(10)+1, 0) \\ Charles R Greathouse IV, Jan 15 2013

A211191 List of odd values of k for which k^2+4 has a factor that is a square number larger than 1.

Original entry on oeis.org

11, 29, 39, 61, 89, 111, 139, 161, 189, 199, 211, 213, 239, 261, 289, 309, 311, 339, 361, 365, 367, 389, 393, 411, 439, 461, 489, 511, 521, 539, 561, 589, 611, 639, 647, 661, 689, 705, 711, 739, 759, 761, 789, 791, 811, 839, 861, 889, 911, 923, 925, 939, 943, 961, 985, 989
Offset: 1

Author

Ruskin Harding, Feb 03 2013

Keywords

Comments

Or, (odd integers n such that) n^2 + 4 is not squarefree. - Zak Seidov, Feb 03 2013

Examples

			The first odd value of k for which k^2+4 has a square factor is 11: 11^2+4 = 125 = 5^2*5.
		

Crossrefs

Programs

  • Magma
    [k: k in [1..1000 by 2] | not IsSquarefree(k^2+4)]; // Bruno Berselli, Feb 06 2013
  • Mathematica
    Select[Range[11, 1000, 2], ! SquareFreeQ[#^2 + 4] &] (* Zak Seidov, Feb 03 2013 *)
  • PARI
    is_term(n) = !issquarefree(n^2+4);
    forstep (n=1,10^3,2, if (is_term(n), print1(n,", ")));
    /* Joerg Arndt, Feb 05 2013 */
    
  • Python
    b=1
    x=1
    for i in range(1, 100000, 2):
        for j in range(2, i):
           if ((i**2)+4)%(j**2)==0:
              a=i
              if a!=b:
                 b=a
                 print(x, i)
                 x=x+1
    

A187765 The (n-1)th decimal place of the fractional part of the square root of n.

Original entry on oeis.org

0, 4, 3, 0, 0, 8, 1, 1, 0, 0, 3, 3, 3, 9, 1, 0, 5, 4, 2, 8, 8, 5, 4, 6, 0, 1, 2, 7, 5, 0, 8, 7, 2, 3, 0, 0, 2, 2, 7, 9, 4, 0, 6, 0, 7, 3, 0, 4, 0, 7, 3, 2, 4, 8, 8, 6, 9, 0, 7, 4, 3, 5, 7, 0, 2, 3, 3, 9, 8, 7, 5, 7, 9, 6, 4, 6, 3, 4, 9, 5, 0, 3, 5, 0, 7, 0, 2
Offset: 1

Author

Ruskin Harding, Jan 04 2013

Keywords

Comments

If n=1 then the term is the first digit before the decimal point. If the square root of n is a whole number then the term is 0.

Examples

			If n=2, sqrt(2)=1.41421356 approx., the 1st(2-1) decimal place of which is 4 so the 2nd term is 4. If n=3, sqrt(3)=1.73205081 approx., the 2nd(3-1) decimal place of which is 3 so the 3rd term is 3.
		

Crossrefs

Cf. A003076 (n-th digit after decimal point of square root of n).

Programs

  • Mathematica
    Join[{0}, Table[RealDigits[Sqrt[n] - Floor[Sqrt[n]], 10, n, -1][[1, -2]], {n, 2, 87}]]
  • Python
    for n in range(1,16):
        x=str(n**0.5)
        for i in range(n):
            x=x+"0"
        if n==1:
            r=str(x[-1])
        else:
            r=r+","+str(x[n])
        if n==15:
            print(r)

A191244 a(1)=1; for n>1, a(n) = n*(10^n-1)/9 written in base n.

Original entry on oeis.org

1, 10110, 110100, 1011130, 3234210, 22142230, 123052510, 523053070, 2520607100, 11111111110, 479110292610, 19641010776330, 80101410369310, 210510130141118110, 1212103125891481260, 315281211715711270, 12138214138151315710, 56015814091312161590, 1780471401817161317410, 6151213981715112481715110
Offset: 1

Author

Ruskin Harding, Dec 30 2012

Keywords

Comments

For n = 2 through 9, this is the decimal number with n digits all equal to n, then written in base n. For n>9 the reader has to separate the "digits" himself (so this is a fairly unsatisfactory sequence).
A000461(n) written in base n.

Examples

			4444 in base 4 is 1011130.
		

Programs

  • Maple
    f:=n->n*(10^n-1)/9;
    g:=n->convert(f(n),base,n);
    for n from 2 to 20 do
    t1:=g(n);
    t2:=nops(t1);
    lprint( [seq(t1[t2+1-i],i=1..t2)]);
  • Mathematica
    Join[{1}, Table[s = FromDigits[Table[n, {n}]]; FromDigits[IntegerDigits[s, n]], {n, 2, 9}]] (* T. D. Noe, Dec 30 2012 *)

Extensions

Edited with Maple program by N. J. A. Sloane, Jan 05 2013