A249169 Fibonacci 16-step numbers, a(n) = a(n-1) + a(n-2) + ... + a(n-16).
1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65535, 131069, 262136, 524268, 1048528, 2097040, 4194048, 8388032, 16775936, 33551616, 67102720, 134204416, 268406784, 536809472, 1073610752, 2147205120, 4294377472, 8588689409
Offset: 15
Links
- M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, J. Int. Seq. 18 (2015) # 15.4.7.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1).
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n<15, 0, `if`(n=15, 1, add(a(n-j), j=1..16))) end: seq(a(n), n=15..50); # Alois P. Heinz, Oct 23 2014
-
Mathematica
CoefficientList[Series[-1 /(x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Nov 21 2014 *)
Formula
a(n) = a(n-1) + a(n-2) + ... + a(n-16).
G.f.: -x^15 / (x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5 +x^4+x^3+x^2+x-1). - Alois P. Heinz, Oct 23 2014