cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A147599 Expansion of Product_{i>=1} (1+x^(4*i-1)).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 2, 1, 0, 1, 3, 1, 0, 2, 3, 1, 0, 3, 4, 1, 1, 4, 4, 1, 1, 5, 5, 1, 2, 7, 5, 1, 3, 8, 6, 1, 5, 10, 6, 2, 6, 12, 7, 2, 9, 14, 7, 3, 11, 16, 8, 4, 15, 19, 8, 6, 18, 21, 9, 8, 23, 24, 10, 11, 27, 27, 11, 14, 34, 30, 12, 19, 39, 33, 14, 24, 47
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Comments

Number of partitions into distinct parts 4*k+3.
Convolution of A147599 and A169975 is A000700. - Vaclav Kotesovec, Jan 18 2017

Crossrefs

Programs

  • Mathematica
    nmax = 200; CoefficientList[Series[Product[(1 + x^(4*k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 18 2017 *)
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 4] == 3, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 18 2017 *)

Formula

G.f. sum(n>=0, x^(2*n^2+n) / prod(k=1,n, 1-x^(4*k))) - Joerg Arndt, Mar 10 2011.
a(n) ~ exp(sqrt(n/3)*Pi/2) / (4*6^(1/4)*n^(3/4)) * (1 - (3*sqrt(3)/(4*Pi) + Pi/(192*sqrt(3))) / sqrt(n)). - Vaclav Kotesovec, Jan 18 2017

A170965 Expansion of Product_{i=1..m} (1 + x^(4*i-1)) for m = 12.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 2, 1, 0, 1, 3, 1, 0, 2, 3, 1, 0, 3, 4, 1, 1, 4, 4, 1, 1, 5, 5, 1, 2, 7, 5, 1, 3, 8, 6, 0, 5, 10, 5, 1, 6, 12, 5, 1, 9, 13, 4, 2, 11, 14, 4, 3, 15, 15, 3, 5, 17, 15, 3, 7, 21, 15, 3, 10, 23, 15, 3, 13, 27, 14, 3, 17, 28, 13, 4, 21, 31, 12
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Comments

Product_{i=1..m} (1 + x^(4*i-1)) is the Poincaré polynomial for both Sp(2m) and O(2m+1).

References

  • H. Weyl, The Classical Groups, Princeton, 1946, see p. 238.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Product[1+x^(4i-1),{i,12}],{x,0,100}],x] (* Harvey P. Dale, Dec 24 2012 *)

A170960 Expansion of Product_{i=1..m} (1 + x^(4*i-1)) for m = 7.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 2, 1, 0, 1, 3, 1, 0, 2, 3, 0, 0, 3, 3, 0, 1, 4, 2, 0, 1, 4, 2, 0, 2, 5, 1, 0, 3, 4, 1, 0, 4, 4, 0, 1, 4, 3, 0, 1, 5, 2, 0, 2, 4, 1, 0, 2, 4, 1, 0, 3, 3, 0, 0, 3, 2, 0, 1, 3, 1, 0, 1, 2, 1, 0, 1, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Comments

Product_{i=1..m} (1 + x^(4*i-1)) is the Poincaré polynomial for both Sp(2m) and O(2m+1).

References

  • H. Weyl, The Classical Groups, Princeton, 1946, see p. 238.

Crossrefs

Formula

a(n) = a(105-n). - Rick L. Shepherd, Mar 01 2013

A170961 Expansion of Product_{i=1..m} (1 + x^(4*i-1)) for m = 8.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 2, 1, 0, 1, 3, 1, 0, 2, 3, 1, 0, 3, 4, 0, 1, 4, 3, 0, 1, 5, 3, 0, 2, 6, 2, 0, 3, 6, 2, 0, 5, 6, 1, 1, 5, 6, 1, 1, 7, 5, 0, 2, 7, 4, 0, 3, 8, 3, 0, 4, 7, 2, 0, 5, 7, 1, 1, 6, 5, 1, 1, 6, 5, 0, 2, 6, 3, 0, 2, 6, 2, 0, 3, 5, 1, 0, 3, 4, 1, 0, 4, 3, 0
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Comments

Product_{i=1..m} (1 + x^(4*i-1)) is the Poincaré polynomial for both Sp(2m) and O(2m+1).

References

  • H. Weyl, The Classical Groups, Princeton, 1946, see p. 238.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Product[1+x^(4i-1),{i,8}],{x,0,110}],x] (* Harvey P. Dale, Aug 22 2012 *)

Formula

a(n) = a(136-n). - Rick L. Shepherd, Mar 01 2013

A170962 Expansion of Product_{i=1..m} (1 + x^(4*i-1)) for m = 9.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 2, 1, 0, 1, 3, 1, 0, 2, 3, 1, 0, 3, 4, 1, 1, 4, 4, 0, 1, 5, 4, 0, 2, 7, 3, 0, 3, 7, 3, 0, 5, 8, 2, 1, 6, 8, 2, 1, 8, 8, 1, 2, 9, 7, 1, 3, 11, 7, 0, 5, 11, 5, 0, 6, 12, 4, 1, 8, 11, 3, 1, 9, 11, 2, 2, 11, 9, 1, 3, 11, 8, 1, 4, 12, 6, 0, 5, 11, 5
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Comments

Product_{i=1..m} (1 + x^(4*i-1)) is the Poincaré polynomial for both Sp(2m) and O(2m+1).

References

  • H. Weyl, The Classical Groups, Princeton, 1946, see p. 238.

Crossrefs

Formula

a(n) = a(171-n). - Rick L. Shepherd, Mar 01 2013

A170963 Expansion of Product_{i=1..m} (1 + x^(4*i-1)) for m = 10.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 2, 1, 0, 1, 3, 1, 0, 2, 3, 1, 0, 3, 4, 1, 1, 4, 4, 1, 1, 5, 5, 0, 2, 7, 4, 0, 3, 8, 4, 0, 5, 9, 3, 1, 6, 10, 3, 1, 9, 10, 2, 2, 10, 10, 2, 3, 13, 10, 1, 5, 14, 9, 1, 7, 16, 8, 1, 9, 16, 7, 1, 11, 18, 5, 2, 14, 16, 4, 3, 16, 16, 3, 5, 18, 14
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Comments

Product_{i=1..m} (1 + x^(4*i-1)) is the Poincaré polynomial for both Sp(2m) and O(2m+1).

References

  • H. Weyl, The Classical Groups, Princeton, 1946, see p. 238.

Crossrefs

Formula

a(n) = a(210-n). - Rick L. Shepherd, Mar 01 2013

A170964 Expansion of Product_{i=1..m} (1 + x^(4*i-1)) for m = 11.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 2, 1, 0, 1, 3, 1, 0, 2, 3, 1, 0, 3, 4, 1, 1, 4, 4, 1, 1, 5, 5, 1, 2, 7, 5, 0, 3, 8, 5, 0, 5, 10, 4, 1, 6, 11, 4, 1, 9, 12, 3, 2, 11, 12, 3, 3, 14, 13, 2, 5, 16, 12, 2, 7, 19, 12, 2, 10, 20, 11, 2, 12, 23, 10, 2, 16, 23, 8, 3, 19, 24, 7, 5
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Comments

Product_{i=1..m} (1 + x^(4*i-1)) is the Poincaré polynomial for both Sp(2m) and O(2m+1).

References

  • H. Weyl, The Classical Groups, Princeton, 1946, see p. 238.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Product[1+x^(4k-1),{k,11}],{x,0,100}],x] (* Harvey P. Dale, Sep 19 2020 *)

Formula

a(n) = a(253-n). - Rick L. Shepherd, Mar 01 2013

A170957 Expansion of Product_{i=1..m} (1 + x^(4*i-1)) for m = 4.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Comments

Product_{i=1..m} (1 + x^(4*i-1)) is the Poincaré polynomial for both Sp(2m) and O(2m+1).

References

  • H. Weyl, The Classical Groups, Princeton, 1946, see p. 238.

Crossrefs

A170958 Expansion of Product_{i=1..m} (1 + x^(4*i-1)) for m = 5.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 2, 1, 0, 0, 2, 1, 0, 1, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Comments

Product_{i=1..m} (1 + x^(4*i-1)) is the Poincaré polynomial for both Sp(2m) and O(2m+1).

References

  • H. Weyl, The Classical Groups, Princeton, 1946, see p. 238.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Product[1+x^(4i-1),{i,5}],{x,0,60}],x] (* Harvey P. Dale, Mar 09 2019 *)

A170959 Expansion of Product_{i=1..m} (1 + x^(4*i-1)) for m = 6.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 2, 1, 0, 1, 3, 0, 0, 2, 2, 0, 0, 3, 2, 0, 1, 3, 1, 0, 1, 3, 1, 0, 2, 3, 0, 0, 2, 2, 0, 0, 3, 1, 0, 1, 2, 1, 0, 1, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Comments

Product_{i=1..m} (1 + x^(4*i-1)) is the Poincaré polynomial for both Sp(2m) and O(2m+1).

References

  • H. Weyl, The Classical Groups, Princeton, 1946, see p. 238.

Crossrefs

Showing 1-10 of 11 results. Next