cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171064 G.f.: -x*(x-1)*(1+x)/(1-x-7*x^2-x^3+x^4).

Original entry on oeis.org

0, 1, 1, 7, 15, 64, 175, 631, 1905, 6433, 20224, 66529, 212625, 692119, 2226799, 7217728, 23284815, 75343591, 243328225, 786800449, 2542156800, 8217744577, 26556314401, 85835882791, 277405671375, 896595420736, 2897714688751
Offset: 0

Views

Author

R. J. Mathar, at the request of R. K. Guy, Sep 03 2010

Keywords

Comments

The member k=7 of a family of sequences starting 0,1,1,k with recurrence a(n) = a(n-1)+k*a(n-2)+a(n-3)-a(n-4).

Crossrefs

Cf. A116201 (k=1), A105309 (k=2), A152090 (k=3), A007598 (k=4), A005178 (k=5), A003757 (k=6).

Programs

  • Magma
    I:=[0, 1, 1, 7]; [n le 4 select I[n] else Self(n-1) + 7*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
  • Mathematica
    CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 7*x^2 - x^3 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
    LinearRecurrence[{1,7,1,-1},{0,1,1,7},30] (* Harvey P. Dale, Nov 15 2020 *)

Formula

a(n) = +a(n-1) +7*a(n-2) +a(n-3) -a(n-4).
The roots (r1..r4) of the characteristic polynomials for this "family" of sequences have the following form (not simplified) for k= 1,2,3,4,5,6.... r1=(sqrt(4*k+10+2*sqrt(4*k+9))+sqrt(4*k-6+2*sqrt(4*k+9)))/4. r2=(sqrt(4*k+10+2*sqrt(4*k+9))-sqrt(4*k-6+2*sqrt(4*k+9)))/4. r3=(-sqrt(4*k+10-2*sqrt(4*k+9))-sqrt(4*k-6-2*sqrt(4*k+9)))/4. r4=(-sqrt(4*k+10-2*sqrt(4*k+9))+sqrt(4*k-6-2*sqrt(4*k+9)))/4. For k=1,2,3, r3 and r4 are complex . Closed-form (not simplified) is as follows for all k (note:for k1-k3 set r3 and r4 =0 and round a(n) to nearest integer): a(n)=sqrt(4*k+9)/(4*k+9)*(((r1)^n+(r2)^n)-((r3)^n+(r4)^n)). [Tim Monahan, Sep 17 2011]