cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A171109 Gromov-Witten invariants for genus 1.

Original entry on oeis.org

0, 0, 1, 225, 87192, 57435240, 60478511040, 96212546526096, 220716443548094400, 702901008498298112640, 3011788599493603375929600, 16916605752011965307094124800, 121848941490162387021464335349760, 1104617766019213143798099163667712000
Offset: 1

Views

Author

N. J. A. Sloane, Sep 27 2010

Keywords

Crossrefs

Programs

  • Mathematica
    (* b = A013587 *) b[n_] := b[n] = If[n==1, 1, Sum[b[k] b[n-k] k^2 (n-k) (3k-n) (3n-4)!/(3k-1)!/(3(n-k)-2)!, {k, 1, n-1}]];
    a[n_] := a[n] = Module[{t1, t2}, t1 = Binomial[n, 3] b[n]; t2 = Sum[ Binomial[3n-1, 3k-1](3k^2-2k)(n-k) b[k] a[n-k], {k, n-1}]; t1/12 + t2/9];
    Array[a, 14] (* Jean-François Alcover, Oct 08 2018, after Gheorghe Coserea *)
  • PARI
    A013587_seq(N) = {
      my(a = vector(N), t1, t2); a[1] = 1;
      for (n=2, N, a[n] = sum(k=1, n-1,
        t1 = binomial(3*n-4, 3*k-2)*(k*(n-k))^2;
        t2 = binomial(3*n-4,3*k-1)*k^3*(n-k);
        (t1 - t2)*a[k]*a[n-k])); a;
    };
    A171109_seq(N) = {
      my(a = vector(N), b=A013587_seq(N), t1, t2);
      for (n=3, N, t1 = binomial(n,3)*b[n];
        t2 = sum(k=1,n-1,binomial(3*n-1,3*k-1)*(3*k^2-2*k)*(n-k)*b[k]*a[n-k]);
        a[n] = (t1/12 + t2/9)); a;
    };
    A171109_seq(14) \\ Gheorghe Coserea, Jan 01 2018

Extensions

Terms a(7) and beyond from Gheorghe Coserea, Jan 01 2018

A171105 Multicomponent Gromov-Witten invariants for genus 0.

Original entry on oeis.org

1, 1, 12, 675, 109781, 40047888
Offset: 1

Views

Author

N. J. A. Sloane, Sep 27 2010

Keywords

Comments

In this entry and in A171104, a multicomponent Gromov-Witten invariant is the number of (possibly reducible, hence "multicomponent") curves in CP^2 of degree n and genus g passing through given 3n-1+g points, so this is the Severi degree N(n, delta) where cogenus delta = (n-1)*(n-2)/2 - g, cf. A171108 and references therein. In particular, a(5) = A171116(5). - Andrey Zabolotskiy, May 04 2022

Crossrefs

Cf. Gromov-Witten invariants, counting irreducible curves only: A171109, A171110, A171111.

Extensions

a(5)-a(6) added by Andrey Zabolotskiy, May 04 2022
Showing 1-2 of 2 results.