cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171142 Triangle T(n,k) of the coefficients [x^k] of the polynomial p_n(x), where p_n(x)=(1+x)*p_{n-1}(x) if n even, p_n(x) = (x^2+4x+1)^((n-1)/2) if n odd.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 8, 18, 8, 1, 1, 9, 26, 26, 9, 1, 1, 12, 51, 88, 51, 12, 1, 1, 13, 63, 139, 139, 63, 13, 1, 1, 16, 100, 304, 454, 304, 100, 16, 1, 1, 17, 116, 404, 758, 758, 404, 116, 17, 1, 1, 20, 165, 720, 1770, 2424, 1770, 720, 165, 20, 1, 1, 21, 185, 885
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 04 2009

Keywords

Comments

Row sums are apparently in A026549.

Examples

			The triangle starts in row n=1 with column 0<=k<n as:
1;
1, 1;
1, 4, 1;
1, 5, 5, 1;
1, 8, 18, 8, 1;
1, 9, 26, 26, 9, 1;
1, 12, 51, 88, 51, 12, 1;
1, 13, 63, 139, 139, 63, 13, 1;
1, 16, 100, 304, 454, 304, 100, 16, 1;
1, 17, 116, 404, 758, 758, 404, 116, 17, 1;
1, 20, 165, 720, 1770, 2424, 1770, 720, 165, 20, 1;
1, 21, 185, 885, 2490, 4194, 4194, 2490, 885, 185, 21, 1;
		

Crossrefs

Programs

  • Maple
    A171142P := proc(n) option remember; if type(n,'even') then (x+1)*procname(n-1) ; else (x^2+4*x+1)^((n-1)/2) ; end if; expand(%) ;end proc:
    A171142 := proc(n,k) coeff(A171142P(n,x),x,k) ; end proc:
  • Mathematica
    Clear[p, n, x, a]
    w = 4;
    p[x, 1] := 1;
    p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^2 + w*x + 1)^Floor[n/2]];
    a = Table[CoefficientList[p[x, n], x], {n, 1, 12}];
    Flatten[a]