A171183 Numbers n such that sigmawt(n) = sigmawt(n+1), where sigmawt(n) is the sum of the divisors of n weighted by divisor multiplicity in n.
14, 957, 1334, 1634, 2402, 2685, 20145, 33998, 42818, 74918, 79826, 79833, 84134, 111506, 122073, 138237, 147454, 166934, 201597, 274533, 289454, 347738, 383594, 416577, 440013, 544334, 605985, 649154, 655005, 1060802, 1642154, 1674513
Offset: 1
Keywords
Links
- Ray Chandler, Table of n, a(n) for n=1..200
Crossrefs
See A168512 for definition of divisor multiplicity.
Programs
-
Mathematica
divmult[d_, n_] := Module[{output, i}, If[d == 1, output = 1, If[d == n, output = 1, i = 0; While[Mod[n, d^(i + 1)] == 0, i = i + 1]; output = i]]; output]; dmt[n_] := Module[{divs, l}, divs = Divisors[n]; l = Length[divs]; Sum[divmult[divs[[i]], n]*divs[[i]], {i, 1, l}]]; l = {}; Do[If[dmt[i] == dmt[i + 1], l = Append[l, i]], {i, 1, 10^6}]; l
Extensions
Extended by Ray Chandler, Dec 08 2009