cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A171187 a(n) = Sum_{k=0..[n/2]} A034807(n,k)^n, where A034807 is a triangle of Lucas polynomials.

Original entry on oeis.org

1, 1, 5, 28, 273, 6251, 578162, 107060591, 29911744769, 27309372325966, 100510174785157275, 579282314757603925315, 5692451844585536053973346, 272831740026972379247127727751, 36494329378701187545939734030067963
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2009

Keywords

Examples

			The n-th term equals the sum of the n-th powers of the n-th row of triangle A034807:
a(0) = 2^0 = 1;
a(1) = 1^1 = 1;
a(2) = 1^2 + 2^2 = 5;
a(3) = 1^3 + 3^3 = 28;
a(4) = 1^4 + 4^4 + 2^4 = 273;
a(5) = 1^5 + 5^5 + 5^5 = 6251;
a(6) = 1^6 + 6^6 + 9^6 + 2^6 = 578162;
a(7) = 1^7 + 7^7 + 14^7 + 7^7 = 107060591; ...
		

Crossrefs

Programs

  • PARI
    {a(n)=sum(k=0, n\2, (binomial(n-k, k)+binomial(n-k-1, k-1))^n)}

Formula

a(n) = Sum_{k=0..[n/2]} [C(n-k,k) + C(n-k-1,k-1)]^n.
Ignoring the zeroth term, equals the logarithmic derivative of A171186.

A171185 G.f.: exp( Sum_{n>=1} (x^n/n)*[Sum_{k=0..[n/2]} A034807(n,k)^3] ), where A034807 is a triangle of Lucas polynomials.

Original entry on oeis.org

1, 1, 5, 14, 40, 126, 408, 1332, 4473, 15377, 53627, 189724, 680475, 2467975, 9038578, 33399571, 124400702, 466619283, 1761467038, 6688059913, 25527326897, 97901917060, 377123873505, 1458573962761, 5662223702216, 22056563938599
Offset: 0

Views

Author

Paul D. Hanna, Dec 14 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 14*x^3 + 40*x^4 + 126*x^5 + 408*x^6 +...
log(A(x)) = x + 9*x^2/2 + 28*x^3/3 + 73*x^4/4 + 251*x^5/5 + 954*x^6/6 +...+ A171215(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,(x^m/m)*sum(k=0, m\2, (binomial(m-k, k)+binomial(m-k-1, k-1))^3))+x*O(x^n)),n)}
Showing 1-2 of 2 results.