A171186
G.f.: exp( Sum_{n>=1} (x^n/n)*[Sum_{k=0..[n/2]} A034807(n,k)^n] ), where A034807 is a triangle of Lucas polynomials.
Original entry on oeis.org
1, 1, 3, 12, 82, 1350, 97888, 15395388, 3754569984, 3038160817708, 10054063262475469, 52672088781183258841, 474423679267205966998406, 20987531454245723696517676183, 2606758801245041424971290635855234
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 82*x^4 + 1350*x^5 +...
log(A(x)) = x + 5*x^2/2 + 28*x^3/3 + 273*x^4/4 + 6251*x^5/5 +...+ A171187(n)*x^n/n +...
-
{a(n)=polcoeff(exp(sum(m=1,n,(x^m/m)*sum(k=0, m\2, (binomial(m-k, k)+binomial(m-k-1, k-1))^m))+x*O(x^n)),n)}
A171215
Row cubed sums of triangle of Lucas polynomials (A034807) for n>0: Sum_{k=0..[n/2]} A034807(n,k)^3.
Original entry on oeis.org
1, 9, 28, 73, 251, 954, 3431, 12617, 48142, 184509, 710755, 2768410, 10857575, 42779655, 169411778, 673898825, 2690398105, 10776264120, 43294049155, 174399508573, 704214759836, 2849828137869, 11555835845903, 46943852758298
Offset: 1
L.g.f.: L(x) = x + 9*x^2/2 + 28*x^3/3 + 73*x^4/4 + 251*x^5/5 +...
exp(L(x)) = 1 + x + 5*x^2 + 14*x^3 + 40*x^4 + 126*x^5 + 408*x^6 +...+ A171185(n)*x^n +...
-
A034807cubed:=func< n | [(Binomial(n-k,k)+Binomial(n-k-1,k-1))^3: k in [0..Floor(n/2)]] >; [&+A034807cubed(n): n in [1..24]]; // Bruno Berselli, May 19 2011
-
makelist(sum((binomial(n-k,k)+binomial(n-k-1, k-1))^3, k, 0, floor(n/2)), n, 1, 24); /* Bruno Berselli, May 19 2011 */
-
{a(n)=sum(k=0, n\2, (binomial(n-k, k)+binomial(n-k-1, k-1))^3)}
Showing 1-2 of 2 results.