cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A347080 G.f. A(x) satisfies: A(x) = x + x * A(A(-x)).

Original entry on oeis.org

0, 1, -1, -2, 2, 13, -16, -161, 170, 2647, -1711, -51248, 5711, 1103710, 599246, -25521869, -33907174, 620323849, 1410745127, -15678980390, -53746958146, 411344661913, 1998823108706, -11256049308869, -75003366373495, 323285264486686, 2904292324907387
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 26; A[] = 0; Do[A[x] = x + x A[A[-x]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

A171213 G.f.: A(x) satisfies A(x) = x + x*A(A(3*x)).

Original entry on oeis.org

1, 3, 54, 3402, 618921, 318392208, 474852630879, 2094575471899362, 27570620677894020891, 1086589159409074932937593, 128377839432663886566934695744, 45490432595875817814676362194769627
Offset: 1

Views

Author

Paul D. Hanna, Dec 08 2009

Keywords

Comments

More generally, if F(x) = x + x*F(F(qx)), then
F(x) = x + x*F(qx) + x*F(qx)*F(qF(qx)) + x*F(qx)*F(qF(qx))*F(qF(qF(qx))) +...
with a simple solution at q=1/2:
F(x) = x/(1-x/2) satisfies: F(x) = x + x*F(F(x/2)).

Examples

			G.f.: A(x) = x + 3*x^2 + 54*x^3 + 3402*x^4 + 618921*x^5 +...
A(A(x)) = x + 6*x^2 + 126*x^3 + 7641*x^4 + 1310256*x^5 +...+ a(n)*x^n/3^(n-1) +...
As a formal series involving products of iterations of the g.f.,
A(x) = x + x*A(3x) + x*A(3x)*A(3A(3x)) + x*A(3x)*A(3A(3x))*A(3A(3A(3x))) +...
which, upon replacing x with A(3x), yields:
A(A(3x)) = A(3x) + A(3x)*A(3A(3x)) + A(3x)*A(3A(3x))*A(3A(3A(3x))) +...
thus A(x) = x + x*A(A(3x)).
		

Crossrefs

Cf. A171212 (q=2), A171214 (q=1/3).

Programs

  • PARI
    {a(n,q=3)=local(A=x+x^2);for(i=1,n,A=x+x*subst(A,x,subst(A,x,q*x+O(x^n))));polcoeff(A,n)}

A171214 G.f. A(x) satisfies A(x) = x + x*A(A(x/3)) = Sum_{n>=1} a(n)*x^n/3^(n*(n+1)/2).

Original entry on oeis.org

1, 1, 2, 10, 137, 5296, 588365, 190088818, 179954321171, 501722122937995, 4134242130461174144, 100943613343624534183723, 7317423203727305175501741434, 1577227642328692213664066391691150
Offset: 1

Views

Author

Paul D. Hanna, Dec 08 2009

Keywords

Comments

More generally, if F(x) = x + x*F(F(qx)), then
F(x) = x + x*F(qx) + x*F(qx)*F(qF(qx)) + x*F(qx)*F(qF(qx))*F(qF(qF(qx))) +...
with a simple solution at q=1/2:
F(x) = x/(1-x/2) satisfies F(x) = x + x*F(F(x/2)).
At q=1, F(x,q=1) is the g.f. of A030266.
QUESTIONS regarding convergence of F(x,q) as a power series in x.
(1) What is Q, the maximum q below which a radius of convergence exists? Is Q=1?
(2) What is the radius of convergence for a given q < Q?

Examples

			G.f.: A(x) = x + x^2/3 + 2*x^3/3^3 + 10*x^4/3^6 + 137*x^5/3^10 + 5296*x^6/3^15 +...+ a(n)*x^n/3^(n(n-1)/2) +...
A(x) = x + x*A(x/3) + x*A(x/3)*A(A(x/3)/3) + x*A(x/3)*A(A(x/3)/3)*A(A(A(x/3)/3)/3) +...
A(A(x)) = x + 2*x^2/3 + 10*x^3/3^3 + 137*x^4/3^6 + 5296*x^5/3^10 +...
SUMS OF SERIES at certain arguments.
A(1) = 1.423879975541542344910599787693637973194...
A(1/3) = 0.373293286580877833612329400906044642790...
A(A(1/3)) = A(1) - 1 = 0.42387997554...
A(A(1)) = 2.387414460111728675082753594461076041830...
A(3) = 3 + 3*A(A(1)) = 10.16224338033518602524826...
		

Crossrefs

Cf. A171212 (q=2), A171213 (q=3), A030266 (q=1).

Programs

  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x+x*subst(A,x,subst(A,x,x/3+O(x^n))));3^(n*(n-1)/2)*polcoeff(A,n)}
Showing 1-3 of 3 results.