A171267 Primes p such that p^s ends with p, where s is sum of the digits of p.
5, 29, 193, 557, 751, 3307, 4999, 7499, 16693, 20807, 31249, 59999, 60443, 79193, 812501, 918751, 5422943, 46295807, 55781249, 74218751, 78281249, 89218751, 89999999, 282922943, 316295807, 674218751, 1583704193, 3824218751, 3958704193, 4092077057, 6342077057, 8324218751, 31666295807, 47779577057, 64478795807, 66666295807, 75000000001
Offset: 1
Examples
1583704193^(1+5+8+3+7+0+4+1+9+3)=1583704193 (mod 10^10) so 1583704193 is in the sequence. It is interesting that each of the four numbers 751^(7+5+1), 751^(7*5*1), 751^pi(751) and 751^prime(751) ends with 751.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..107
Programs
-
Mathematica
Do[n=Prime[m];a=IntegerDigits[n];If[PowerMod[n,Apply[Plus,a],10^Length[a]] ==n,Print[n]],{m,100000000}]
Extensions
Terms a(28) onward from Max Alekseyev, Aug 18 2013