A171268 Primes q such that q^p ends with q, where p is the product of the digits of q.
5, 11, 37, 61, 73, 199, 751, 3761, 7993, 79193, 7799999, 1111111111111111111, 11111111111111111111111, 199999999999999999999999999
Offset: 1
Examples
7799999^(7*7*9*9*9*9*9) == 7799999 (mod 10^7), so 7799999 is a term.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..22
Programs
-
Mathematica
Do[n=Prime[m];a=IntegerDigits[n];If[PowerMod[n,Apply[Times,a],10^Length[a]]==n,Print[n]],{m,100000000}]
Extensions
a(12)-a(14) from Max Alekseyev, Aug 18 2013
Comments