cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171379 Triangle, read by rows, T(n, k) = A059481(n,k)*(A059481(n,k) - 1)/2.

Original entry on oeis.org

0, 1, 3, 3, 15, 45, 6, 45, 190, 595, 10, 105, 595, 2415, 7875, 15, 210, 1540, 7875, 31626, 106491, 21, 378, 3486, 21945, 106491, 426426, 1471470, 28, 630, 7140, 54285, 313236, 1471470, 5887596, 20701395, 36, 990, 13530, 122265, 827541, 4507503, 20701395, 82812015, 295475895
Offset: 1

Views

Author

Roger L. Bagula, Dec 07 2009

Keywords

Comments

Row sums are: {0, 4, 63, 836, 11000, 147757, 2030217, 28435780, 404461170, 5824442504, ...}.
The sequence is the number of connections between figurate numbers A059481 as points page 25 Riordan.

Examples

			Triangle begins as:
   0;
   1,   3;
   3,  15,   45;
   6,  45,  190,   595;
  10, 105,  595,  2415,   7875;
  15, 210, 1540,  7875,  31626,  106491;
  21, 378, 3486, 21945, 106491,  426426, 1471470;
  28, 630, 7140, 54285, 313236, 1471470, 5887596, 20701395;
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 25.

Crossrefs

Programs

  • GAP
    Flat(List([1..10], n-> List([1..n], k-> Binomial(Binomial(n+k-1, k), 2) ))); # G. C. Greubel, Nov 28 2019
  • Magma
    [Binomial(Binomial(n+k-1, k), 2): k in [1..n], n in [1..10]]; // G. C. Greubel, Nov 28 2019
    
  • Maple
    seq(seq( binomial(binomial(n+k-1, k), 2), k=1..n), n=1..10); # G. C. Greubel, Nov 28 2019
  • Mathematica
    Table[Binomial[Binomial[n+k-1, k], 2], {n,10}, {k,n}]//Flatten (* modified by G. C. Greubel, Nov 28 2019 *)
  • PARI
    T(n,k) = binomial(binomial(n+k-1, k), 2); \\ G. C. Greubel, Nov 28 2019
    
  • Sage
    [[binomial(binomial(n+k-1, k), 2) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Nov 28 2019
    

Formula

T(n,k) = binomial(n+k-1, k)*(binomial(n+k-1, k) - 1)/2.