A171379 Triangle, read by rows, T(n, k) = A059481(n,k)*(A059481(n,k) - 1)/2.
0, 1, 3, 3, 15, 45, 6, 45, 190, 595, 10, 105, 595, 2415, 7875, 15, 210, 1540, 7875, 31626, 106491, 21, 378, 3486, 21945, 106491, 426426, 1471470, 28, 630, 7140, 54285, 313236, 1471470, 5887596, 20701395, 36, 990, 13530, 122265, 827541, 4507503, 20701395, 82812015, 295475895
Offset: 1
Examples
Triangle begins as: 0; 1, 3; 3, 15, 45; 6, 45, 190, 595; 10, 105, 595, 2415, 7875; 15, 210, 1540, 7875, 31626, 106491; 21, 378, 3486, 21945, 106491, 426426, 1471470; 28, 630, 7140, 54285, 313236, 1471470, 5887596, 20701395;
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 25.
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
GAP
Flat(List([1..10], n-> List([1..n], k-> Binomial(Binomial(n+k-1, k), 2) ))); # G. C. Greubel, Nov 28 2019
-
Magma
[Binomial(Binomial(n+k-1, k), 2): k in [1..n], n in [1..10]]; // G. C. Greubel, Nov 28 2019
-
Maple
seq(seq( binomial(binomial(n+k-1, k), 2), k=1..n), n=1..10); # G. C. Greubel, Nov 28 2019
-
Mathematica
Table[Binomial[Binomial[n+k-1, k], 2], {n,10}, {k,n}]//Flatten (* modified by G. C. Greubel, Nov 28 2019 *)
-
PARI
T(n,k) = binomial(binomial(n+k-1, k), 2); \\ G. C. Greubel, Nov 28 2019
-
Sage
[[binomial(binomial(n+k-1, k), 2) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Nov 28 2019
Formula
T(n,k) = binomial(n+k-1, k)*(binomial(n+k-1, k) - 1)/2.
Comments