cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171397 Write n in base 10, but then read it as if it were written in base 11: if n = Sum_{i >= 0} d_i*10^i, with 0 <= d_i <= 9, then a(n) = Sum_{i >= 0} d_i*11^i.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72
Offset: 0

Views

Author

Paul Weisenhorn, Jul 11 2011

Keywords

Comments

This is the sequence of all decimal integers that are created when base 10 numbers are interpreted as base 11 numbers.
Numbers without digit A (=10) in their representation in base 11. Complement of A095778. - François Marques, Oct 20 2020
Original definition: Earliest sequence containing no 11-term arithmetic progression.
In general, if p is prime, the earliest sequence containing no p-term arithmetic progression is created when base (p-1) numbers are interpreted as base p numbers.

Examples

			a(53)=58 because 53_11 in base 11 equals 58. - _François Marques_, Oct 20 2020
		

References

  • D. E. Arganbright, Mathematical Modeling with Spreadsheets, ABACUS, Vol. 3, #4(1986), 19-31.

Crossrefs

Different from A065039. - Alois P. Heinz, Sep 07 2011
CNumbers with at least one digit b-1 in base b : A074940 (b=3), A337250 (b=4), A337572 (b=5), A333656 (b=6), A337141 (b=7), A337239 (b=8), A338090 (b=9), A011539 (b=10), A095778 (b=11).
Numbers with no digit b-1 in base b : A005836 (b=3), A023717 (b=4), A020654 (b=5), A037465 (b=6), A020657 (b=7), A037474 (b=8), A037477 (b=9), A007095 (b=10), this sequence (b=11).

Programs

  • Maple
    seq(`if`(numboccur (10, convert (n, base, 11))=0, n, NULL), n=0..122);
    # second Maple program:
    a:= n-> (l-> add(l[i]*11^(i-1), i=1..nops(l)))(convert(n, base, 10)):
    seq(a(n), n=0..66);  # Alois P. Heinz, Aug 30 2024
  • Mathematica
    Table[FromDigits[RealDigits[n, 10], 11], {n, 0, 100}] (* François Marques, Oct 20 2020 *)
  • PARI
    a(n) = fromdigits(digits(n), 11); \\ Michel Marcus, Oct 09 2020
    
  • Python
    def A171397(n): return int(str(n),11) # Chai Wah Wu, Aug 30 2024

Extensions

Edited by N. J. A. Sloane, Aug 31 2024