cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171400 Minimal number of editing steps (delete, insert or substitute) to transform the binary representation of n into that of A007918(n), the least prime not less than n.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 3, 3, 1, 0, 1, 0, 2, 1, 1, 0, 2, 1, 2, 2, 1, 0, 1, 0, 2, 1, 2, 2, 1, 0, 3, 3, 1, 0, 1, 0, 2, 1, 1, 0, 2, 1, 2, 2, 1, 0, 2, 2, 2, 1, 1, 0, 1, 0, 5, 4, 2, 1, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 2, 1, 1, 0, 2, 1, 1, 0, 2, 2, 3, 3, 1, 0, 4, 4, 4, 4, 5, 5, 1, 0, 2, 2, 1, 0, 1, 0, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 08 2009

Keywords

Comments

Delete steps are not necessary;
a(n) = 0 iff n is prime: a(A000040(n))=0;
a(A171401(n)) = 1;
A171402 gives smallest numbers m such that a(m)=n: a(A171402(n))=n.

Examples

			n=14, A007918(14)=17: 14==1110->1100->1100->10001==17, 2 subst and 1 ins: a(14)=3;
n=15, A007918(15)=17: 15==1111->1011->1001->10001==17, 2 subst and 1 ins: a(15)=3;
n=16, A007918(16)=17: 16==10000->10001==17, 1 subst: a(16)=1, A171401(8)=16;
n=17, A007918(17)=17: no editing step: a(17)=0;
n=18, A007918(18)=19: 18==10010->10011==19, 1 subst: a(18)=1, A171401(9)=18.
		

Crossrefs

Formula

a(n) = BinaryLevenshteinDistance(n, A007918(n)).