A171400 Minimal number of editing steps (delete, insert or substitute) to transform the binary representation of n into that of A007918(n), the least prime not less than n.
1, 1, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 3, 3, 1, 0, 1, 0, 2, 1, 1, 0, 2, 1, 2, 2, 1, 0, 1, 0, 2, 1, 2, 2, 1, 0, 3, 3, 1, 0, 1, 0, 2, 1, 1, 0, 2, 1, 2, 2, 1, 0, 2, 2, 2, 1, 1, 0, 1, 0, 5, 4, 2, 1, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 2, 1, 1, 0, 2, 1, 1, 0, 2, 2, 3, 3, 1, 0, 4, 4, 4, 4, 5, 5, 1, 0, 2, 2, 1, 0, 1, 0, 2
Offset: 0
Examples
n=14, A007918(14)=17: 14==1110->1100->1100->10001==17, 2 subst and 1 ins: a(14)=3; n=15, A007918(15)=17: 15==1111->1011->1001->10001==17, 2 subst and 1 ins: a(15)=3; n=16, A007918(16)=17: 16==10000->10001==17, 1 subst: a(16)=1, A171401(8)=16; n=17, A007918(17)=17: no editing step: a(17)=0; n=18, A007918(18)=19: 18==10010->10011==19, 1 subst: a(18)=1, A171401(9)=18.
Links
- R. Zumkeller, Table of n, a(n) for n = 0..2500
- Michael Gilleland, Levenshtein Distance
- Wikipedia, Levenshtein Distance
Formula
a(n) = BinaryLevenshteinDistance(n, A007918(n)).
Comments