cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171477 a(n) = 6*a(n-1) - 8*a(n-2) + 1 for n > 1; a(0) = 1, a(1) = 7.

Original entry on oeis.org

1, 7, 35, 155, 651, 2667, 10795, 43435, 174251, 698027, 2794155, 11180715, 44731051, 178940587, 715795115, 2863245995, 11453115051, 45812722347, 183251413675, 733006703275, 2932028910251, 11728119835307, 46912487729835
Offset: 0

Views

Author

Klaus Brockhaus, Dec 09 2009

Keywords

Comments

a(n) = A006095(n+2).
Second binomial transform of A168642.
Essentially partial sums of A006516.

Crossrefs

Cf. A006095 (Gaussian binomial coefficient [n, 2] for q=2), A168642 ((8*2^n+(-1)^n)/3, a(0)=1), A006516 (2^(n-1)*(2^n-1)), A171472, A171473.

Programs

  • Magma
    [(8*4^n-6*2^n+1)/3: n in [0..30]]; // Vincenzo Librandi, Jul 18 2011
  • PARI
    {m=23; v=concat([1, 7], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]+1); v}
    

Formula

a(n) = (8*4^n-6*2^n+1)/3.
G.f.: 1/((1-x)*(1-2*x)*(1-4*x)).
a(n) = A139250(2^(n+1) - 1). - Omar E. Pol, Dec 20 2012