cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171516 a(n) = a(n-1) + a(n-2) + k, n>1; with a(0) = 1, a(1) = 2, k = 3.

Original entry on oeis.org

1, 2, 6, 11, 20, 34, 57, 94, 154, 251, 408, 662, 1073, 1738, 2814, 4555, 7372, 11930, 19305, 31238, 50546, 81787, 132336, 214126, 346465, 560594, 907062, 1467659, 2374724, 3842386, 6217113, 10059502, 16276618, 26336123, 42612744, 68948870
Offset: 0

Views

Author

Gary W. Adamson, Dec 10 2009

Keywords

Comments

In an infinite set of sequences converging to phi, H(n+1) = H(n) + H(n-1) + k.
The coincident formula = H(n) = (H(n+1) + H(n-2))/2, then proof of convergence to phi follows, [Gatta and D'Amico]: To get H(4) such that the average of H(4) and H(1) = H(3), the authors write H(4) = 2H(3) - H1 = 2H(1) + 2H(2) + 2k - H(1) = H(2) + (H(1) + H(2) + k) + k = H(2) + H(3) + k, then applying the iterative process to the latter, H(n+1) = H(n) + H(n-1) + k.
Cf. A014739 for a(0) = 1, a(1) = 2, k = 2, getting:
A014739 = (1, 2, 5,. 9, 16, 27, 45, 74, 121, 197,...)
A171516 = (1, 2, 6, 11, 20, 34, 57, 94, 154, 251,...), we obtain
A000071 = (0, 0, 1, .2,..4,..7,.12,.20,..33,..54,...).

Examples

			a(5) = a(4) + a(3) + 3 = 20 + 11 + 3 = 34.
a(4) = (a(5) + a(2)) / 2 = (34 + 6) / 2 = 20.
		

Crossrefs

Cf. A000285 (first differences). [From R. J. Mathar, Dec 12 2009]

Programs

  • GAP
    F:=Fibonacci;; List([0..40], n-> F(n+3)+2*F(n+1)-3); # G. C. Greubel, Jul 12 2019
  • Magma
    F:=Fibonacci; [F(n+3)+2*F(n+1)-3: n in [0..40]]; // G. C. Greubel, Jul 12 2019
    
  • Mathematica
    LinearRecurrence[{2,0,-1},{1,2,6},40] (* Harvey P. Dale, Apr 07 2012 *)
    With[{F=Fibonacci}, Table[F[n+3]+2*F[n+1]-3, {n,0,40}]] (* G. C. Greubel, Jul 12 2019 *)
  • PARI
    vector(40, n, n--; f=fibonacci; f(n+2)+2*f(n+1)-3) \\ G. C. Greubel, Jul 12 2019
    
  • Sage
    f=fibonacci; [f(n+2)+2*f(n+1)-3 for n in (0..40)] # G. C. Greubel, Jul 12 2019
    

Formula

a(n) = a(n-1) + a(n-2) + 3, n>1; with a(0) = 1, a(1) = 2.
From R. J. Mathar, Dec 12 2009: (Start)
a(n) = 2*a(n-1) - a(n-3) = A000285(n+1) - 3.
G.f.: (1+2*x^2) / ((1-x)*(1-x-x^2)). (End)
a(n) = Fibonacci(n+3) + 2*Fibonacci(n+1) - 3. - G. C. Greubel, Jul 12 2019

Extensions

More terms from R. J. Mathar, Dec 12 2009
Fixed typos in name, formula, crossrefs - Alex Ratushnyak, Apr 27 2012