A171516 a(n) = a(n-1) + a(n-2) + k, n>1; with a(0) = 1, a(1) = 2, k = 3.
1, 2, 6, 11, 20, 34, 57, 94, 154, 251, 408, 662, 1073, 1738, 2814, 4555, 7372, 11930, 19305, 31238, 50546, 81787, 132336, 214126, 346465, 560594, 907062, 1467659, 2374724, 3842386, 6217113, 10059502, 16276618, 26336123, 42612744, 68948870
Offset: 0
Examples
a(5) = a(4) + a(3) + 3 = 20 + 11 + 3 = 34. a(4) = (a(5) + a(2)) / 2 = (34 + 6) / 2 = 20.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- F. Gatta and A. D'Amico, Sequences {H(n)} For Which H(n+1)/H(n) Approaches The Golden Ratio, The Fibonacci Quarterly, Vol. 46/47, Nov. 2008/2009, #4.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1). [_R. J. Mathar_, Dec 12 2009]
Crossrefs
Cf. A000285 (first differences). [From R. J. Mathar, Dec 12 2009]
Programs
-
GAP
F:=Fibonacci;; List([0..40], n-> F(n+3)+2*F(n+1)-3); # G. C. Greubel, Jul 12 2019
-
Magma
F:=Fibonacci; [F(n+3)+2*F(n+1)-3: n in [0..40]]; // G. C. Greubel, Jul 12 2019
-
Mathematica
LinearRecurrence[{2,0,-1},{1,2,6},40] (* Harvey P. Dale, Apr 07 2012 *) With[{F=Fibonacci}, Table[F[n+3]+2*F[n+1]-3, {n,0,40}]] (* G. C. Greubel, Jul 12 2019 *)
-
PARI
vector(40, n, n--; f=fibonacci; f(n+2)+2*f(n+1)-3) \\ G. C. Greubel, Jul 12 2019
-
Sage
f=fibonacci; [f(n+2)+2*f(n+1)-3 for n in (0..40)] # G. C. Greubel, Jul 12 2019
Formula
a(n) = a(n-1) + a(n-2) + 3, n>1; with a(0) = 1, a(1) = 2.
From R. J. Mathar, Dec 12 2009: (Start)
a(n) = 2*a(n-1) - a(n-3) = A000285(n+1) - 3.
G.f.: (1+2*x^2) / ((1-x)*(1-x-x^2)). (End)
a(n) = Fibonacci(n+3) + 2*Fibonacci(n+1) - 3. - G. C. Greubel, Jul 12 2019
Extensions
More terms from R. J. Mathar, Dec 12 2009
Fixed typos in name, formula, crossrefs - Alex Ratushnyak, Apr 27 2012
Comments