A171565 Number of partitions of n into odd divisors of n.
1, 1, 1, 2, 1, 2, 3, 2, 1, 5, 3, 2, 5, 2, 3, 14, 1, 2, 12, 2, 5, 18, 3, 2, 9, 7, 3, 23, 5, 2, 54, 2, 1, 26, 3, 26, 35, 2, 3, 30, 9, 2, 72, 2, 5, 286, 3, 2, 17, 9, 18, 38, 5, 2, 93, 38, 9, 42, 3, 2, 275, 2, 3, 493, 1, 44, 108, 2, 5, 50, 110, 2, 117, 2, 3, 698, 5, 50, 126, 2, 17, 239, 3, 2, 375, 56
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; local b, l; l, b:= sort( [select(x-> is(x:: odd), divisors(n))[]]), proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0, b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i)))) end; b(n, nops(l)) end: seq(a(n), n=0..100); # Alois P. Heinz, Mar 30 2017
-
Mathematica
a[0] = 1; a[n_] := a[n] = Module[{b, l}, l = Select[Divisors[n], OddQ]; b[m_, i_] := b[m, i] = If[m == 0, 1, If[i < 1, 0, b[m, i-1] + If[l[[i]] > m, 0, b[m - l[[i]], i]]]]; b[n, Length[l]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 11 2017, after Alois P. Heinz *)
Formula
a(n) = f(n,n,1) with f(n,m,k) = if k<=m then f(n,m,k+2)+f(n,m-k,k)*0^(n mod k) else 0^m.
Comments