cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171628 Number of compositions of n such that the smallest part is divisible by the number of parts.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 3, 4, 6, 8, 11, 15, 19, 22, 25, 30, 37, 47, 62, 83, 108, 136, 168, 205, 247, 295, 354, 429, 524, 642, 789, 972, 1196, 1466, 1789, 2173, 2625, 3155, 3778, 4515, 5391, 6437, 7692, 9201, 11014, 13186, 15780, 18865, 22516, 26818, 31871, 37791
Offset: 1

Views

Author

Vladeta Jovovic, Dec 13 2009

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n,t,g) option remember; `if` (n=0, `if` (irem(g, t)=0, 1, 0), add (b(n-i, t+1, min(i, g)), i=1..n)) end: a:= n-> b(n,0,infinity): seq (a(n), n=1..60); # Alois P. Heinz, Dec 15 2009
    A171628 := proc(n) local g,k; g := 0 ; for k from 0 to n do g := g+add (x^(k*d)*(1-x^d)/(1-x)^d,d=numtheory[divisors](k)) ; g := expand(g) ; end do ; coeftayl(g,x=0,n) ; end proc: seq(A171628(n),n=1..60) ; # R. J. Mathar, Dec 14 2009
  • Mathematica
    b[n_, t_, g_] := b[n, t, g] = If[n == 0, If [Mod[g, t] == 0, 1, 0], Sum[b[n - i, t + 1, Min[i, g]], {i, n}]];
    a[n_] := b[n, 0, Infinity];
    Array[a, 60] (* Jean-François Alcover, May 23 2020, after Alois P. Heinz *)

Formula

G.f.: Sum_{n>=0} [Sum_{d|n} x^(n*d)*(1-x^d)/(1-x)^d].

Extensions

More terms from R. J. Mathar and Alois P. Heinz, Dec 14 2009