cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171633 Coefficients of a Hermite-like polynomial from Eulerian polynomials: p(x,n) = Sum_{k=1..n+1} [Eulerian(n + 1, k - 1)*x^(k - 1)]; q(x,n) = p''(x,n) - x*p'(x,n) + n*p(x,n).

Original entry on oeis.org

1, 4, 4, 25, 28, 11, 136, 234, 144, 26, 609, 2040, 1590, 624, 57, 2388, 15096, 19056, 9648, 2412, 120, 8593, 95196, 208893, 148336, 54267, 8628, 247, 29224, 532918, 1961928, 2205850, 1063000, 285786, 29272, 502, 95689, 2739256, 16059128
Offset: 1

Views

Author

Roger L. Bagula, Dec 13 2009

Keywords

Comments

Row sums are {1, 8, 64, 540, 4920, 48720, 524160, 6108480, 76809600, 1037836800, 15008716800, 231437606400, ...}.
The important observation here is that the modulo two pattern is the same as the Hermite product A171531 type polynomials.

Examples

			{1},
{4, 4},
{25, 28, 11},
{136, 234, 144, 26},
{609, 2040, 1590, 624, 57},
{2388, 15096, 19056, 9648, 2412, 120},
{8593, 95196, 208893, 148336, 54267, 8628, 247},
{29224, 532918, 1961928, 2205850, 1063000, 285786, 29272, 502},
{95689, 2739256, 16059128, 28938232, 20207530, 7250696, 1422304, 95752, 1013},
{305284, 13239252, 118078464, 329909376, 350572104, 171167736, 47500128, 6757056, 305364, 2036}
		

References

  • Eugene Jahnke and Fritz Emde, Table of Functions with Formulae and Curves, Dover Book, New York, 1945, page 32.

Programs

  • Mathematica
    t[n_, k_] := Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]
    p[x_, n_] := Sum[t[n + 1, k - 1]*x^(k - 1), {k, 1, n + 1}]
    b = Table[CoefficientList[D[p[x, n], {x, 2}] - x*D[p[x, n], {x, 1}] + n*p[x, n], x], {n, 1, 10}]
    Flatten[%]

Formula

p(x,n) = p(x,n) = Sum_{k=1..n+1} [Eulerian(n + 1, k - 1)*x^(k - 1), ];
q(x,n) = p''(x,n) - x*p'(x,n) + n*p(x,n).