cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171636 Table read by rows. Coefficients of Lommel polynomials L(n, m, z) = (Gamma(n + m) / (Gamma(n) * (z/2)^m)) * hypergeom([(1 - m)/2, -m/2], [n, -m, 1 - n - m], z^2) for n = m and descending powers.

Original entry on oeis.org

2, 24, 0, 1, 480, 0, 16, 13440, 0, 360, 0, 1, 483840, 0, 10752, 0, 42, 21288960, 0, 403200, 0, 1728, 0, 1, 1107025920, 0, 18247680, 0, 79200, 0, 80, 66421555200, 0, 968647680, 0, 4118400, 0, 5280, 0, 1, 4516665753600, 0, 59041382400, 0, 242161920
Offset: 1

Views

Author

Roger L. Bagula, Dec 13 2009

Keywords

Comments

Lommel polynomials are rational functions and not polynomials.

Examples

			{2},
{24, 0, 1},
{480, 0, 16},
{13440, 0, 360, 0, 1},
{483840, 0, 10752, 0, 42},
{21288960, 0, 403200, 0, 1728, 0, 1},
{1107025920, 0, 18247680, 0, 79200, 0, 80},
{66421555200, 0, 968647680, 0, 4118400, 0, 5280, 0, 1},
{4516665753600, 0, 59041382400, 0, 242161920, 0, 349440, 0, 130},
{343266597273600, 0, 4064999178240, 0, 15968010240, 0, 24460800, 0, 12600, 0, 1}
		

Crossrefs

Variant: A369117.

Programs

  • Maple
    L := (n, m, z) -> (GAMMA(n + m)/(GAMMA(n)*(z/2)^m))*hypergeom([(1 - m)/2, -m/2],
    [n, -m, 1 - n - m], z^2);
    for n from 1 to 10 do L(n, n, 1/z): convert(series(%, z, 12), polynom):
    lprint(seq(coeff(expand(%), z, n - k), k = 0 .. n - irem(n, 2))): od:
    # Peter Luschny, Jan 29 2024
  • Mathematica
    Lommel[m_, n_, z_] := (Gamma[n + m]/(Gamma[n] ((z/ 2))^m)) HypergeometricPFQ[{((1 - m))/2, (- m)/2}, {n, (-m), 1 - n - m}, z^2]
    Table[CoefficientList[Expand[Lommel[n, n, x]*x^n], x], {n, 1, 10}]
    Flatten[%]