A171651 Triangle T, read by rows : T(n,k) = A007318(n,k)*A005773(n+1-k).
1, 2, 1, 5, 4, 1, 13, 15, 6, 1, 35, 52, 30, 8, 1, 96, 175, 130, 50, 10, 1, 267, 576, 525, 260, 75, 12, 1, 750, 1869, 2016, 1225, 455, 105, 14, 1, 2123, 6000, 7476, 5376, 2450, 728, 140, 16, 1, 6046, 19107, 27000, 22428, 12096, 4410, 1092, 180, 18, 1
Offset: 0
Examples
Triangle begins: 1; 2, 1; 5, 4, 1; 13, 15, 6, 1; 35, 52, 30, 8, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(u, d, t) option remember; `if`(u=0 and d=0, 1/2, expand(`if`(u=0, 0, b(u-1, d, 2)*`if`(t=3, x, 1)) +`if`(d=0, 0, b(u, d-1, `if`(t=2, 3, 1))))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n+1$2, 1)): seq(T(n), n=0..12); # Alois P. Heinz, Apr 29 2015 # second program: A171651:= (n, k)-> binomial(n,k)*add((-1)^(n-k-j)*binomial(n-k,j)*binomial(2*j+1,j+1),j=0..n-k): seq(print(seq(A171651(n, k), k=0..n)), n=0..9); # Mélika Tebni, Dec 16 2023
-
Mathematica
b[u_, d_, t_] := b[u, d, t] = If[u == 0 && d == 0, 1/2, Expand[If[u == 0, 0, b[u-1, d, 2]*If[t == 3, x, 1]] + If[d == 0, 0, b[u, d-1, If[t == 2, 3, 1]]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n+1, n+1, 1] ]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 21 2016, after Alois P. Heinz *)
Formula
Extensions
Corrected by Philippe Deléham, Dec 18 2009