cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171651 Triangle T, read by rows : T(n,k) = A007318(n,k)*A005773(n+1-k).

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 13, 15, 6, 1, 35, 52, 30, 8, 1, 96, 175, 130, 50, 10, 1, 267, 576, 525, 260, 75, 12, 1, 750, 1869, 2016, 1225, 455, 105, 14, 1, 2123, 6000, 7476, 5376, 2450, 728, 140, 16, 1, 6046, 19107, 27000, 22428, 12096, 4410, 1092, 180, 18, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 14 2009

Keywords

Examples

			Triangle begins:
   1;
   2,   1;
   5,   4,  1;
  13,  15,  6, 1;
  35,  52, 30, 8, 1;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(u, d, t) option remember; `if`(u=0 and d=0, 1/2,
          expand(`if`(u=0, 0, b(u-1, d, 2)*`if`(t=3, x, 1))
          +`if`(d=0, 0, b(u, d-1, `if`(t=2, 3, 1)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n+1$2, 1)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Apr 29 2015
    # second program:
    A171651:= (n, k)-> binomial(n,k)*add((-1)^(n-k-j)*binomial(n-k,j)*binomial(2*j+1,j+1),j=0..n-k): seq(print(seq(A171651(n, k), k=0..n)), n=0..9);  # Mélika Tebni, Dec 16 2023
  • Mathematica
    b[u_, d_, t_] := b[u, d, t] = If[u == 0 && d == 0, 1/2, Expand[If[u == 0, 0, b[u-1, d, 2]*If[t == 3, x, 1]] + If[d == 0, 0, b[u, d-1, If[t == 2, 3, 1]]]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n+1, n+1, 1] ];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 21 2016, after Alois P. Heinz *)

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A168491(n), A099323(n), A001405(n), A005773(n+1), A001700(n), A026378(n+1), A005573(n), A122898(n) for x = -3, -2, -1, 0, 1, 2, 3, 4 respectively.
E.g.f. of column k: exp(x)*(BesselI(0,2*x)+BesselI(1,2*x))*x^k / k!. - Mélika Tebni, Dec 16 2023

Extensions

Corrected by Philippe Deléham, Dec 18 2009