cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A097692 Triangle read by rows: a(n,k) = number of paths of n upsteps U and n downsteps D that contain k UDUs.

Original entry on oeis.org

1, 2, 4, 2, 10, 8, 2, 26, 30, 12, 2, 70, 104, 60, 16, 2, 192, 350, 260, 100, 20, 2, 534, 1152, 1050, 520, 150, 24, 2, 1500, 3738, 4032, 2450, 910, 210, 28, 2, 4246, 12000, 14952, 10752, 4900, 1456, 280, 32, 2, 12092, 38214, 54000, 44856, 24192, 8820, 2184, 360, 36, 2
Offset: 0

Views

Author

David Callan, Aug 19 2004; corrected Jun 10 2005

Keywords

Comments

See A091869 for the distribution of the parameter "number of UDUs" on Dyck paths.

Examples

			Table begins
\ k 0, 1, 2, ...
n
0 | 1
1 | 2
2 | 4, 2
3 | 10, 8, 2
4 | 26, 30, 12, 2
5 | 70, 104, 60, 16, 2
6 |192, 350, 260, 100, 20, 2
7 |534, 1152, 1050, 520, 150, 24, 2
The path UDUDUD contains 2 UDUs and a(2,1) = 2 because each of UDUD, DUDU contains one UDU.
		

References

  • Aristidis Sapounakis, Panagiotis Tsikouras, Ioannis Tasoulas, Kostas Manes, Strings of Length 3 in Grand-Dyck Paths and the Chung-Feller Property, Electr. J. Combinatorics, 19 (2012), #P2. - From N. J. A. Sloane, Feb 06 2013

Crossrefs

Column k=0 is A025565. The row sums are the (even) central binomial coefficients A000984.
Cf. A171651.

Programs

  • Maple
    b:= proc(u, d, t) option remember; `if`(u=0 and d=0, 1,
          expand(`if`(u=0, 0, b(u-1, d, 2)*`if`(t=3, x, 1))
          +`if`(d=0, 0, b(u, d-1, `if`(t=2, 3, 1)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 1)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Apr 29 2015
  • Mathematica
    gfForBalancedByNumberUDU=Sqrt[(1 + x - x*y)/(1 - 3*x - x*y)]; Map[CoefficientList[ #, y]&, CoefficientList[Normal[Series[gfForBalancedByNumberUDU, {x, 0, 8}, {y, 0, 8}]], x]]

Formula

G.f.: ((1 + x - x*y)/(1 - 3*x - x*y))^(1/2) = Sum_{n>=0, k>=0} a(n,k) x^n y^k.

Extensions

Keyword tabl changed to tabf by Michel Marcus, Apr 07 2013

A171670 Triangle T read by rows : T(n,k)= A007318(n,k)*A005773(n-k).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 13, 20, 12, 4, 1, 35, 65, 50, 20, 5, 1, 96, 210, 195, 100, 30, 6, 1, 267, 672, 735, 455, 175, 42, 7, 1, 750, 2136, 2688, 1960, 910, 280, 56, 8, 1, 2123, 6750, 9612, 8064, 4410, 1638, 420, 72, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 14 2009

Keywords

Examples

			Triangle begins : 1 ; 1,1 ; 2,2,1 ; 5,6,3,1 ; 13,20,12,4,1 ; 35,65,50,20,5,1 ; ...
		

Crossrefs

Formula

Sum_{k, 0<=k<=n} T(n,k)= A024718(n).

A171814 Triangle T : T(n,k)= A007318(n,k)*A001700(n-k).

Original entry on oeis.org

1, 3, 1, 10, 6, 1, 35, 30, 9, 1, 126, 140, 60, 12, 1, 462, 630, 350, 100, 15, 1, 1716, 2772, 1890, 700, 150, 18, 1, 6435, 12012, 9702, 4410, 1225, 210, 21, 1, 24310, 51480, 48048, 25872, 8820, 1960, 280, 24, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 19 2009

Keywords

Examples

			Triangle begins:
     1;
     3,    1;
    10,    6,    1;
    35,   30,    9,   1;
   126,  140,   60,  12,   1;
   462,  630,  350, 100,  15,  1;
  1716, 2772, 1890, 700, 150, 18, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:=n!SeriesCoefficient[Exp[2*x]*(BesselI[0,2*x]+BesselI[1,2*x])*x^k / k!,{x,0,n}]; Table[T[n,k],{n,0,8},{k,0,n}]//Flatten (* Stefano Spezia, Dec 23 2023 *)

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A168491(n), A099323(n+1), A001405(n), A005773(n+1), A001700(n), A026378(n+1), A005573(n), A122898(n) for x = -4, -3, -2, -1, 0, 1, 2, 3 respectively.
Conjectural g.f.: 1/(2*t)*( sqrt( (1 - x*t)/(1 - (4 + x)*t) ) - 1 ) = 1 + (3 + x)*t + (10 + 6*x + x^2)*t^2 + .... - Peter Bala, Nov 10 2013
E.g.f. of column k: exp(2*x)*(BesselI(0,2*x)+BesselI(1,2*x))*x^k / k!. - Mélika Tebni, Dec 23 2023
Showing 1-3 of 3 results.