A171695 Expansion of g.f.: 2^(floor((n+1)/2))*n!*(1-y)^(n+1)*f(x, y, m), where f(x, y, m) = 2^(m+1)*exp(2^m*t)/((1-y*exp(t))*(1 + (2^(m+1)-1)*exp(2^m*t))), and m = 1.
1, 1, 1, -1, 6, -1, -1, 7, 25, -7, 10, -44, 152, -20, -2, -26, 198, -292, 1628, -642, 94, -154, 1000, -1954, 6416, 1586, -1400, 266, 1646, -13606, 51774, -75094, 175226, -73890, 15962, -1378, 1000, -3936, -4448, 190432, 37104, 779104, -472160, 133152, -15128
Offset: 0
Examples
Triangle begins as: 1; 1, 1; -1, 6, -1; -1, 7, 25, -7; 10, -44, 152, -20, -2; -26, 198, -292, 1628, -642, 94; -154, 1000, -1954, 6416, 1586, -1400, 266; 1646, -13606, 51774, -75094, 175226, -73890, 15962, -1378; 1000, -3936, -4448, 190432, 37104, 779104, -472160, 133152, -15128;
Links
- G. C. Greubel, Rows n = 0..40 of the triangle, flattened
Programs
-
Mathematica
m= 1; f[t_, y_, m_]= 2^(m+1)*Exp[2^m*t]/((1-y*Exp[t])*(1+(2^(m+1)-1)*Exp[2^m*t])); Table[CoefficientList[2^(Floor[(n+1)/2])*n!*(1-y)^(n+1)*SeriesCoefficient[ Series[f[t,y,m], {t,0,20}], n], y], {n,0,12}]//Flatten (* modified by G. C. Greubel, Mar 29 2022 *)
Formula
G.f.: 2^(floor((n+1)/2))*n!*(1-y)^(n+1)*f(x, y, m), where f(x, y, m) = 2^(m+1)*exp(2^m*t)/((1-y*exp(t))*(1 + (2^(m+1)-1)*exp(2^m*t))), and m = 1.
Extensions
Edited by G. C. Greubel, Mar 29 2022