A171712 Triangle T(n,k) read by rows. Coloring of sectors in a circle.
1, 1, 2, 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 1
Examples
Table begins: 1; 1, 2; 1, 2, 3; 1, 2, 1, 2; 1, 2, 1, 2, 3; 1, 2, 1, 2, 1, 2; 1, 2, 1, 2, 1, 2, 3; 1, 2, 1, 2, 1, 2, 1, 2;
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Crossrefs
Cf. A158478.
Programs
-
GAP
T:= function(n,k) if k=1 then return 1; elif k=n then return (5-(-1)^n)/2; else return (3+(-1)^k)/2; fi; end; Flat(List([1..15], n-> List([1..n], k-> T(n,k) ))); # G. C. Greubel, Nov 29 2019
-
Magma
function T(n,k) if k eq 1 then return 1; elif k eq n then return (5-(-1)^n)/2; else return (3+(-1)^k)/2; end if; return T; end function; [T(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Nov 29 2019
-
Maple
seq(seq( `if`(k=1, 1, `if`(k=n, (5-(-1)^n)/2, (3+(-1)^k)/2 )), k=1..n), n=1..15); # G. C. Greubel, Nov 29 2019
-
Mathematica
T[n_, k_]:= If[k==1, 1, If[k==n, (5-(-1)^n)/2, (3+(-1)^k)/2]]; Table[T[n, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Nov 29 2019 *)
-
PARI
T(n,k) = if(k==1, 1, if(k==n, (5-(-1)^n)/2, (3+(-1)^k)/2 )); \\ G. C. Greubel, Nov 29 2019
-
Sage
def T(n, k): if (k==1): return 1 elif (k==n): return (5-(-1)^n)/2 else: return (3+(-1)^k)/2 [[T(n, k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Nov 29 2019
Formula
T(n, k) = (3 + (-1)^k)/2 with T(n, 1) = 1 and T(n, n) = (5 - (-1)^n)/2 for n >= 2. - G. C. Greubel, Nov 29 2019
Comments