A171797 A modified Sisyphus function: a(n) = concatenation of (number of digits in n) (number of even digits) (number of odd digits).
110, 101, 110, 101, 110, 101, 110, 101, 110, 101, 211, 202, 211, 202, 211, 202, 211, 202, 211, 202, 220, 211, 220, 211, 220, 211, 220, 211, 220, 211, 211, 202, 211, 202, 211, 202, 211, 202, 211, 202, 220, 211, 220, 211, 220, 211, 220, 211, 220, 211, 211, 202
Offset: 0
Examples
11 has 2 digits, both odd, so a(11) = 202. 12 has 2 digits, one even and one odd, so a(12)=211. Then a(211) = 312.
References
- M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..25000
Crossrefs
Programs
-
Haskell
a171797 n = read $ concatMap (show . ($ n)) [a055642, a196563, a196564] :: Integer -- Reinhard Zumkeller, Feb 22 2012, Oct 15 2010
-
Maple
nevenDgs := proc(n) local a, d; a := 0 ; for d in convert(n,base,10) do if type(d,'even') then a :=a +1 ; end if; end do; a ; end proc: cat2 := proc(a,b) local ndigsb; ndigsb := max(ilog10(b)+1,1) ; a*10^ndigsb+b ; end: catL := proc(L) local a, i; a := op(1,L) ; for i from 2 to nops(L) do a := cat2(a,op(i,L)) ; end do; a; end proc: A055642 := proc(n) max(1,ilog10(n)+1) ; end proc: A171797 := proc(n) local n1,n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n1,n2,n1-n2]) ; end proc: seq(A171797(n),n=1..80) ; # R. J. Mathar, Oct 15 2010 and Oct 18 2010
-
Python
def a(n): s = str(n); e = sum(d in "02468" for d in s) return int("".join(map(str, (len(s), e, len(s)-e)))) print([a(n) for n in range(52)]) # Michael S. Branicky, Jun 15 2021
Extensions
More terms from R. J. Mathar, Oct 15 2010
a(0) added by N. J. A. Sloane, May 12 2019
Comments