cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A308002 a(n) = smallest nonnegative number that requires n applications of the modified Sisyphus function x -> A171797(x) to reach 312.

Original entry on oeis.org

312, 101, 0, 11, 10000000000111111111
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2019

Keywords

Comments

The next term, a(5), is 1 0^1000099 1^100010, a number with 1100110 digits, and is too large to display here.
a(n) = index of first n in A100961.

Examples

			0 -> 110 -> 312 reaches 312 in two steps, so a(2) = 0.
		

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.

Crossrefs

A100961 For a decimal string s, let f(s) = decimal string ijk, where i = number of even digits in s, j = number of odd digits in s, k=i+j (see A171797). Start with s = decimal expansion of n; a(n) = number of applications of f needed to reach the string 123.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 1, 2, 1, 2
Offset: 0

Views

Author

N. J. A. Sloane, Jun 17 2005

Keywords

Comments

Obviously if the digits of m and n have the same parity then a(m) = a(n). E.g. a(334) = a(110). In other words, a(n) = a(A065031(n)).
It is easy to show that (i) the trajectory of every number under f eventually reaches 123 (if s has more than three digits then f(s) has fewer digits than s) and (ii) since each string ijk has only finitely many preimages, a(n) is unbounded.

Examples

			n=0: s=0 -> f(s) = 101 -> f(f(s)) = 123, stop, a(0) = 2.
n=1: s=1 => f(s) = 011 -> f(f(s)) = 123, stop, f(1) = 2.
		

Crossrefs

A073054 gives another version. f(n) is (essentially) A171797 or A073053.

Extensions

More terms from Zak Seidov, Jun 18 2005

A305396 Records in A171797.

Original entry on oeis.org

101, 110, 211, 220, 321, 330, 431, 440, 541, 550
Offset: 1

Views

Author

N. J. A. Sloane, Jun 25 2018

Keywords

Comments

The record-holders are the powers of 2 written in base 4, A004643.

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.

Crossrefs

A073053 Apply DENEAT operator (or the Sisyphus function) to n.

Original entry on oeis.org

101, 11, 101, 11, 101, 11, 101, 11, 101, 11, 112, 22, 112, 22, 112, 22, 112, 22, 112, 22, 202, 112, 202, 112, 202, 112, 202, 112, 202, 112, 112, 22, 112, 22, 112, 22, 112, 22, 112, 22, 202, 112, 202, 112, 202, 112, 202, 112, 202, 112, 112, 22, 112, 22
Offset: 0

Views

Author

Michael Joseph Halm, Aug 16 2002

Keywords

Comments

DENEAT(n): concatenate number of even digits in n, number of odd digits and total number of digits. E.g., 25 -> 1.1.2 = 112 (Digits: Even, Not Even, And Total). Leading zeros are then omitted.
This is also known as the Sisyphus function. - N. J. A. Sloane, Jun 25 2018
Repeated application of the DENEAT operator reduces all numbers to 123. This is easy to prove. Compare A073054, A100961. - N. J. A. Sloane Jun 18 2005

Examples

			a(1) = 0.1.1 -> 11.
a(10000000000) = 10111 because 10000000000 has 10 even digits, 1 odd digit and 11 total digits
		

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.
  • M. Ecker, Caution: Black Holes at Work, New Scientist (Dec. 1992)
  • M. J. Halm, Blackholing, Mpossibilities 69, (Jan 01 1999), p. 2.
  • J. Schram, The Sisyphus string, J. Rec. Math., 19:1 (1987), 43-44.
  • M. Zeger, Fatal attraction, Mathematics and Computer Education, 27:2 (1993), 118-123.

Crossrefs

Programs

  • Maple
    read("transforms") :
    A073053 := proc(n)
        local e,o,L ;
        if n = 0 then
            0 ;
        else
            e := A196563(n) ;
            o := A196564(n) ;
            L := [e,o,e+o] ;
            digcatL(L) ;
        end if;
    end proc: # R. J. Mathar, Jul 13 2012
    # Maple code based on R. J. Mathar's code for A171797, added by N. J. A. Sloane, May 12 2019 (Start)
    nevenDgs := proc(n) local a, d; a := 0 ; for d in convert(n, base, 10) do if type(d, 'even') then a :=a +1 ; end if; end do; a ; end proc:
    cat2 := proc(a, b) local ndigsb; ndigsb := max(ilog10(b)+1, 1) ; a*10^ndigsb+b ; end:
    catL := proc(L) local a, i; a := op(1, L) ; for i from 2 to nops(L) do a := cat2(a, op(i, L)) ; end do; a; end proc:
    A055642 := proc(n) max(1, ilog10(n)+1) ; end proc:
    A171797 := proc(n) local n1, n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n1, n2, n1-n2]) ; end proc:
    A073053 := proc(n) local n1, n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n2, n1-n2, n1]) ; end proc:
    seq(A073053(n), n=1..80) ; (End)
    L:=proc(n) if n=0 then 1 else floor(evalf(log(n)/log(10)))+1; fi; end;
    S:=proc(n) local Le,Ld,Lt,t1,e,d,t; global L;
    t1:=convert(n,base,10); e:=0; d:=0; t:=nops(t1);
    for i from 1 to t do if (t1[i] mod 2) = 0 then e:=e+1; else d:=d+1; fi; od:
    Le:=L(e); Ld:=L(d); Lt:=L(t);
    if e=0 then 10^Lt*d+t
    elif d=0 then 10^(Ld+Lt)*e+10^Lt*d+t
    else 10^(Ld+Lt)*e+10^Lt*d+t; fi;
    end;
    [seq(S(n),n=1..200)]; # N. J. A. Sloane, Jun 25 2018
    # alternative Maple program:
    a:= n-> (l-> (e-> parse(cat(e, (h-> [h-e, h][])(nops(l))))
        )(nops(select(x-> x::even, l))))(convert(n, base, 10)):
    seq(a(n), n=0..200);  # Alois P. Heinz, Jan 21 2022
  • Mathematica
    f[n_] := Block[{id = IntegerDigits[n]}, FromDigits[ Join[ IntegerDigits[ Length[ Select[id, EvenQ[ # ] &]]], IntegerDigits[ Length[ Select[id, OddQ[ # ] &]]], IntegerDigits[ Length[ id]] ]]]; Table[ f[n], {n, 0, 55}] (* Robert G. Wilson v, Jun 09 2005 *)
    s={};Do[id=IntegerDigits[n];ev=Select[id, EvenQ];ne=Select[id, OddQ];fd=FromDigits[{Length[ev], Length[ne], Length[id]}]; s=Append[s, fd], {n, 81}];SameQ[newA073053-s] (* Zak Seidov *)
    deneat[n_]:=Module[{idn=IntegerDigits[n]},FromDigits[Flatten[ IntegerDigits/@ {Count[ idn,?EvenQ],Count[ idn,?OddQ],Length[ idn]}]]] Array[ deneat,60,0]// Flatten (* Harvey P. Dale, Aug 13 2021 *)
  • Python
    def a(n):
        s = str(n)
        e = sum(1 for c in s if c in "02468")
        return int(str(e) + str(len(s)-e) + str(len(s)))
    print([a(n) for n in range(54)]) # Michael S. Branicky, Jan 21 2022

Extensions

Edited and corrected by Jason Earls and Robert G. Wilson v, Jun 03 2005
a(0) added by N. J. A. Sloane, May 12 2019

A171798 a(n) = base-10 concatenation XYZ, where X = number of bits in binary expansion of n, Y = number of 0's, Z = number of 1's.

Original entry on oeis.org

101, 211, 202, 321, 312, 312, 303, 431, 422, 422, 413, 422, 413, 413, 404, 541, 532, 532, 523, 532, 523, 523, 514, 532, 523, 523, 514, 523, 514, 514, 505, 651, 642, 642, 633, 642, 633, 633, 624, 642, 633, 633, 624, 633, 624, 624, 615, 642, 633, 633, 624
Offset: 1

Views

Author

N. J. A. Sloane, Oct 15 2010, Oct 16 2010

Keywords

Comments

Start with n, repeatedly apply the map i -> a(i). Then every n converges to one of 1019, 1147, 1165 or 14311 (cf. A171813). Proof: this is true by direct calculation for n=1..2^14. For larger n, a(n) < n.

Examples

			14 = 1110 in base 2, so X=4, Y=1, Z=3, a(14)=413.
		

Crossrefs

Programs

  • Haskell
    a171798 n = read $ concatMap (show . ($ n))
                       [a070939, a023416, a000120] :: Integer
    -- Reinhard Zumkeller, Feb 22 2012
    
  • Maple
    # Maple code for trajectories of numbers from 1 to M:
    F:=proc(n) local s,t1,t2; t1:=convert(n,base,2); t2:=nops(t1); s:=add(t1[i],i=1..t2);
    parse(cat(t2,t2-s,s)); end;
    M:=16384;
    for n from 1 to M do t3:=F(n); sw:=-1;
    for i from 1 to 10 do
    if (t3 = 1147) or (t3 = 1165) or (t3 = 1019) or (t3 = 14311) then sw:=1; break; fi;
    t3:=F(t3);
    od;
    if sw < 0 then lprint(n); fi;
    od:
    Contribution from R. J. Mathar, Oct 15 2010: (Start)
    read("transforms") ; cat2 := proc(a,b) dgsb := max(1,ilog10(b)+1) ; a*10^dgsb+b ; end proc:
    catL := proc(L) local a; a := op(1,L) ; for i from 2 to nops(L) do a := cat2(a,op(i,L)) ; end do; a; end proc:
    A070939 := proc(n) max(1,ilog2(n)+1) ; end proc:
    A171798 := proc(n) local n1,n3 ; n1 := A070939(n) ; n3 := wt(n) ; catL([n1,n1-n3,n3]) ; end proc:
    seq(A171798(n),n=1..80) ; (End)
  • Mathematica
    ans[n_]:=Module[{idn2=IntegerDigits[n,2]},FromDigits[{Length[idn2],Count[idn2,0],Count[idn2,1]}]]; Table[ans[i], {i, 50}] (* Harvey P. Dale, Nov 06 2010 *)
  • Python
    def a(n):
        b = bin(n)[2:]
        z = b.count("0")
        return int(str(len(b)) + str(z) + str(len(b)-z))
    print([a(n) for n in range(1, 52)]) # Michael S. Branicky, Mar 28 2022

Extensions

More terms from R. J. Mathar, Oct 15 2010

A308003 A modified Sisyphus function: a(n) = concatenation of (number of even digits in n) (number of digits in n) (number of odd digits in n).

Original entry on oeis.org

110, 11, 110, 11, 110, 11, 110, 11, 110, 11, 121, 22, 121, 22, 121, 22, 121, 22, 121, 22, 220, 121, 220, 121, 220, 121, 220, 121, 220, 121, 121, 22, 121, 22, 121, 22, 121, 22, 121, 22, 220, 121, 220, 121, 220, 121, 220, 121, 220, 121, 121, 22, 121, 22, 121
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2019

Keywords

Comments

If we start with n and repeatedly apply the map i -> a(i), we eventually reach 132 (see A073054).

Examples

			11 has 2 digits, both odd, so a(11)=22 (leading zeros are omitted).
12 has 2 digits, one even and one odd, so a(12)=121. Then a(121) = 132.
		

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.

Crossrefs

A073054 gives steps to reach 132.

Programs

  • Maple
    # Maple code based on R. J. Mathar's code for A171797:
    nevenDgs := proc(n) local a, d; a := 0 ; for d in convert(n,base,10) do if type(d,'even') then a :=a +1 ; end if; end do; a ; end proc:
    cat2 := proc(a,b) local ndigsb; ndigsb := max(ilog10(b)+1,1) ; a*10^ndigsb+b ; end:
    catL := proc(L) local a, i; a := op(1,L) ; for i from 2 to nops(L) do a := cat2(a,op(i,L)) ; end do; a; end proc:
    A055642 := proc(n) max(1,ilog10(n)+1) ; end proc:
    A308003 := proc(n) local n1,n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n2,n1,n1-n2]) ; end proc:
    seq(A308003(n),n=0..80) ;
  • Python
    def a(n):
        s = str(n)
        e = sum(1 for c in s if c in "02468")
        return int(str(e) + str(len(s)) + str(len(s)-e))
    print([a(n) for n in range(55)]) # Michael S. Branicky, Mar 29 2022

A350709 Modified Sisyphus function of order 3: a(n) is the concatenation of (number of digits of n)(number digits of n congruent to 0 modulo 3)(number of digits of n congruent to 1 modulo 3)(number of digits of n congruent to 2 modulo 3).

Original entry on oeis.org

1100, 1010, 1001, 1100, 1010, 1001, 1100, 1010, 1001, 1100, 2110, 2020, 2011, 2110, 2020, 2011, 2110, 2020, 2011, 2110, 2101, 2011, 2002, 2101, 2011, 2002, 2101, 2011, 2002, 2101, 2200, 2110, 2101, 2200, 2110, 2101, 2200
Offset: 0

Views

Author

Keywords

Comments

If we start with n and repeatedly apply the map i -> a(i), we eventually get the cycle {4031, 4112, 4220}

Examples

			11 has two digits, both congruent to 1 modulo 3, so a(11) = 2020.
a(20) = 2101.
a(30) = 2200.
a(1111123567) = 10262.
		

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.

Crossrefs

Programs

  • Python
    def a(n):
        d, m = list(map(int, str(n))), [0, 0, 0]
        for di in d: m[di%3] += 1
        return int(str(len(d)) + "".join(map(str, m)))
    print([a(n) for n in range(37)]) # Michael S. Branicky, Mar 28 2022

A308004 a(n) = smallest nonnegative number that requires n applications of the Sisyphus function x -> A073053(x) to reach 123.

Original entry on oeis.org

123, 101, 0, 20, 11, 1
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2019

Keywords

Comments

a(n) = index of first n in A073054.
a(6) is currently unknown.

Examples

			0 -> 101 -> 123 reaches 123 in two steps, so a(2) = 0.
1 -> 11 -> 22 -> 202 -> 303 -> 123 reaches 123 in 5 steps, so a(5) = 1.
		

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.

Crossrefs

Programs

  • Mathematica
    id[n_]:=IntegerDigits[n]; il[n_]:=If[n!=0,IntegerLength[n],1]
    den[n_]:=FromDigits[{Length[Select[id[n],EvenQ]],Length[Select[id[n],OddQ]],il[n]}]; numD[n_]:=Length[FixedPointList[den,n]]-2;
    a308004[n_]:=Module[{k=0},While[numD[k]!=n,k++];k];
    a308004/@Range[0,5] (* Ivan N. Ianakiev, May 13 2019 *)

A308005 A modified Sisyphus function: a(n) = concatenation of (number of odd digits in n) (number of digits in n) (number of even digits in n).

Original entry on oeis.org

11, 110, 11, 110, 11, 110, 11, 110, 11, 110, 121, 220, 121, 220, 121, 220, 121, 220, 121, 220, 22, 121, 22, 121, 22, 121, 22, 121, 22, 121, 121, 220, 121, 220, 121, 220, 121, 220, 121, 220, 22, 121, 22, 121, 22, 121, 22, 121, 22, 121, 121, 220, 121, 220, 121, 220, 121, 220, 121, 220, 22, 121, 22, 121, 22
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2019

Keywords

Comments

If we start with n and repeatedly apply the map i -> a(i), it appears that we eventually reach one of the two fixed points 22 or 231, or enter the two-cycle (33, 220). Are there any other possibilities? This is in contrast to the behavior of the closely related A308003.

Examples

			11 has 2 digits, both odd, so a(11)=220.
12 has 2 digits, one even and one odd, so a(12)=121. Then a(121) = 231, a fixed point.
22 has two digits, both even, so 22 -> 22, another fixed point  (leading zeros are omitted).
		

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.

Crossrefs

Programs

  • Maple
    Maple code based on R. J. Mathar's code for A171797:
    nevenDgs := proc(n) local a, d; a := 0 ; for d in convert(n, base, 10) do if type(d, 'even') then a :=a +1 ; end if; end do; a ; end proc:
    cat2 := proc(a, b) local ndigsb; ndigsb := max(ilog10(b)+1, 1) ; a*10^ndigsb+b ; end:
    catL := proc(L) local a, i; a := op(1, L) ; for i from 2 to nops(L) do a := cat2(a, op(i, L)) ; end do; a; end proc:
    A055642 := proc(n) max(1, ilog10(n)+1) ; end proc:
    A308005 := proc(n) local n1, n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n1-n2, n1, n2]) ; end proc:
    [seq(A308005(n), n=0..80)];

A375208 Modified Sisyphus function of order 5.

Original entry on oeis.org

110000, 101000, 100100, 100010, 100001, 110000, 101000, 100100, 100010, 100001, 211000, 202000, 201100, 201010, 201001, 211000, 202000, 201100, 201010, 201001, 210100, 201100, 200200, 200110, 200101, 210100, 201100, 200200, 200110, 200101, 210010, 201010, 200110, 200020, 200011, 210010, 201010, 200110, 200020, 200011, 210001, 201001, 200101, 200011, 200002
Offset: 0

Views

Author

Matt Coppenbarger, Oct 16 2024

Keywords

Comments

a(n) is the concatenation of the number of digits in n with number of digits of n congruent to k modulo 5 for each k from 0 to 4 in turn. See Example.
If we start with n and repeatedly apply the map i -> a(i), we eventually get the cycle {613200, 622110}.

Examples

			11 has two digits, both congruent to 1 modulo 5, so a(11) = 202000.
a(20) = 210100.
a(30) = 210010.
a(2527200000) = 1060400.
		

Crossrefs

Programs

  • Maple
    a:= n-> (l-> parse(cat(nops(l), seq(add(`if`(irem(i, 5)=k
              , 1, 0), i=l), k=0..4))))(convert(n, base, 10)):
    seq(a(n), n=0..44);  # Alois P. Heinz, Oct 23 2024
  • Python
    # based on Michael S. Branicky in A350709
    def a(n, order=5):
        d, m = list(map(int, str(n))), [0]*order
        for di in d: m[di%order] += 1
        return int(str(len(d)) + "".join(map(str, m)))
    print([a(n) for n in range(37)])
    
  • Python
    from collections import Counter
    def A375208(n):
        s = str(n)
        c = Counter(int(d)%5 for d in s)
        return int(str(len(s))+''.join(str(c[i]) for i in range(5))) # Chai Wah Wu, Nov 26 2024
Showing 1-10 of 11 results. Next