cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A073054 Number of applications of DENEAT operator x -> A073053(x) needed to transform n to 123.

Original entry on oeis.org

2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4
Offset: 0

Views

Author

Michael Joseph Halm, Aug 16 2002

Keywords

Comments

0 first occurs for n=123, 1 first occurs for n=101, 2 first occurs for n=0, 3 first occurs for n=20, 4 first occurs for n=11, 5 first occurs for n=1. What is the least n such that a(n) > 5? - Jason Earls, Jun 03 2005 (Corrected by N. J. A. Sloane, May 12 2019)
Since each string has only finitely many preimages under this map, the sequence is unbounded. Compare A100961. - N. J. A. Sloane, Jun 18 2005

References

  • M. Ecker, Caution: Black Holes at Work, New Scientist (Dec. 1992)
  • M. J. Halm, Blackholing, Mpossibilities 69, (1999), p. 2.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{id = IntegerDigits[n]}, FromDigits[ Join[ IntegerDigits[ Length[ Select[id, EvenQ[ # ] &]]], IntegerDigits[ Length[ Select[id, OddQ[ # ] &]]], IntegerDigits[ Length[ id]] ]]]; Table[ Length[ NestWhileList[f, n, UnsameQ, All]] - 2, {n, 0, 104}] (* Robert G. Wilson v, Jun 09 2005 *)

Extensions

Edited and corrected by Jason Earls and Robert G. Wilson v, Jun 03 2005
Offset corrected by N. J. A. Sloane, May 12 2019

A308104 Distinct values taken by the DENEAT operator (A073053) in increasing order.

Original entry on oeis.org

11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 112, 123, 134, 145, 156, 167, 178, 189, 202, 213, 224, 235, 246, 257, 268, 279, 303, 314, 325, 336, 347, 358, 369, 404, 415, 426, 437, 448, 459, 505, 516, 527, 538, 549, 606, 617, 628, 639, 707, 718, 729, 808, 819, 909, 1010
Offset: 1

Views

Author

Rémy Sigrist, May 13 2019

Keywords

Comments

This sequence corresponds to numbers of the form e.o.(e+o) with e, o >= 0 and e+o > 0 (where "." denotes concatenation in decimal).
This sequence first differs from A108203 for n = 55: a(55) = 1010 whereas A108203(55) = 1001.

Crossrefs

See A308106 for the values in order of appearance.

Programs

  • PARI
    See Links section.

A305395 Records in A073053.

Original entry on oeis.org

11, 101, 112, 202, 213, 303, 314, 404, 415, 505
Offset: 1

Views

Author

N. J. A. Sloane, Jun 25 2018

Keywords

Comments

The record-holders are the powers of 2 written in base 4, A004643.

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.

Crossrefs

A308004 a(n) = smallest nonnegative number that requires n applications of the Sisyphus function x -> A073053(x) to reach 123.

Original entry on oeis.org

123, 101, 0, 20, 11, 1
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2019

Keywords

Comments

a(n) = index of first n in A073054.
a(6) is currently unknown.

Examples

			0 -> 101 -> 123 reaches 123 in two steps, so a(2) = 0.
1 -> 11 -> 22 -> 202 -> 303 -> 123 reaches 123 in 5 steps, so a(5) = 1.
		

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.

Crossrefs

Programs

  • Mathematica
    id[n_]:=IntegerDigits[n]; il[n_]:=If[n!=0,IntegerLength[n],1]
    den[n_]:=FromDigits[{Length[Select[id[n],EvenQ]],Length[Select[id[n],OddQ]],il[n]}]; numD[n_]:=Length[FixedPointList[den,n]]-2;
    a308004[n_]:=Module[{k=0},While[numD[k]!=n,k++];k];
    a308004/@Range[0,5] (* Ivan N. Ianakiev, May 13 2019 *)

A308106 Distinct values taken by the DENEAT operator (A073053) in order of appearance.

Original entry on oeis.org

101, 11, 112, 22, 202, 213, 123, 33, 303, 314, 224, 134, 44, 404, 415, 325, 235, 145, 55, 505, 516, 426, 336, 246, 156, 66, 606, 617, 527, 437, 347, 257, 167, 77, 707, 718, 628, 538, 448, 358, 268, 178, 88, 808, 819, 729, 639, 549, 459, 369, 279, 189, 99, 909
Offset: 1

Views

Author

Rémy Sigrist, May 13 2019

Keywords

Examples

			A073053 starts:       101, 11, 101, 11, 101, 11, 101, 11, 101, 11, 112, 22, ...
This sequence starts: 101, 11,                                     112, 22, ...
		

Crossrefs

See A308104 for the values in increasing order.
Cf. A073053.

Programs

  • PARI
    See Links section.

A173578 a(n) = a(n-1) + A073053(a(n-1)).

Original entry on oeis.org

1, 12, 124, 337, 370, 493, 616, 829, 1042, 1356, 1490, 1714, 1848, 2162, 2476, 2790, 3014, 3238, 3462, 3776, 3910, 4044, 4448, 4852, 5166, 5390, 5524, 5748, 5972, 6106, 6420, 6824, 7228, 7542, 7766, 7990, 8124, 8438, 8752, 8976, 9200, 9514, 9648, 9962
Offset: 1

Views

Author

Keywords

Comments

A073053 sequence is operator DENEAT: concatenate number of even digits in n, number of odd digits and total number of digits.

Programs

  • Maple
    A173578 := proc(n)
        option remember;
        if n = 1 then
            1;
        else
            procname(n-1)+A073053(procname(n-1)) ;
        end if;
    end proc:
    seq(A173578(n),n=1..20) ; # R. J. Mathar, Jul 13 2012
  • Mathematica
    deneat[n_]:=Module[{idn=IntegerDigits[n]},FromDigits[ Flatten[ IntegerDigits/@ {Count[ idn,?EvenQ],Count[ idn,?OddQ],Length[ idn]}]]]; NestList[ #+deneat[ #]&,1,50] (* Harvey P. Dale, Aug 13 2021 *)

Formula

a(n) = a(n-1)+ A073053(a(n-1)).

A308125 Numbers k that are a multiple of the DENEAT operator applied to k (A073053).

Original entry on oeis.org

0, 22, 44, 66, 88, 123, 264, 369, 462, 615, 660, 738, 759, 852, 957, 1120, 1344, 1568, 1884, 2024, 2068, 2200, 2244, 2288, 2420, 2464, 2640, 2684, 2860, 2912, 3350, 3360, 3584, 3752, 4004, 4048, 4224, 4268, 4400, 4444, 4488, 4620, 4664, 4840, 4884, 5024, 6028, 6204
Offset: 0

Views

Author

Paolo P. Lava, May 14 2019

Keywords

Comments

The DENEAT operator is also known as the Sisyphus function.
On the other hand, the sequence of numbers k such that DENEAT(k) is a multiple of k, is the finite sequence {1, 11, 14, 16, 22, 56, 123}.

Examples

			2912 / DENEAT(2912) = 2912 / 224 = 13.
		

References

  • J. Schram, The Sisyphus string, J. Rec. Math., 19:1 (1987), 43-44.

Crossrefs

Programs

  • Maple
    P:=proc(n) local a,b,c,d,k; a:=convert(n,base,10); b:=0: c:=0:
    for k from 1 to nops(a) do if a[k] mod 2=0 then b:=b+1; else c:=c+1; fi;
    od: d:=b*10^length(c)+c; a:=n/(d*10^length(length(n))+length(n)):
    if frac(a)=0 then n; fi; end: 0,seq(P(i),i=1..6204);

A171797 A modified Sisyphus function: a(n) = concatenation of (number of digits in n) (number of even digits) (number of odd digits).

Original entry on oeis.org

110, 101, 110, 101, 110, 101, 110, 101, 110, 101, 211, 202, 211, 202, 211, 202, 211, 202, 211, 202, 220, 211, 220, 211, 220, 211, 220, 211, 220, 211, 211, 202, 211, 202, 211, 202, 211, 202, 211, 202, 220, 211, 220, 211, 220, 211, 220, 211, 220, 211, 211, 202
Offset: 0

Views

Author

N. J. A. Sloane, Oct 15 2010

Keywords

Comments

Start with n, repeatedly apply the map i -> a(i). Then every number converges to 312. - Eric Angelini and Alexandre Wajnberg, Oct 15 2010

Examples

			11 has 2 digits, both odd, so a(11) = 202.
12 has 2 digits, one even and one odd, so a(12)=211. Then a(211) = 312.
		

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.

Crossrefs

Cf. A073053 (Sisyphus), A171798, A171813, A055642, A196563, A196564, A308002, A308003 (another version).
A100961 gives steps to reach 312.

Programs

  • Haskell
    a171797 n = read $ concatMap (show . ($ n))
                       [a055642, a196563, a196564] :: Integer
    -- Reinhard Zumkeller, Feb 22 2012, Oct 15 2010
    
  • Maple
    nevenDgs := proc(n) local a, d; a := 0 ; for d in convert(n,base,10) do if type(d,'even') then a :=a +1 ; end if; end do; a ; end proc:
    cat2 := proc(a,b) local ndigsb; ndigsb := max(ilog10(b)+1,1) ; a*10^ndigsb+b ; end:
    catL := proc(L) local a, i; a := op(1,L) ; for i from 2 to nops(L) do a := cat2(a,op(i,L)) ; end do; a; end proc:
    A055642 := proc(n) max(1,ilog10(n)+1) ; end proc:
    A171797 := proc(n) local n1,n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n1,n2,n1-n2]) ; end proc:
    seq(A171797(n),n=1..80) ; # R. J. Mathar, Oct 15 2010 and Oct 18 2010
  • Python
    def a(n):
        s = str(n); e = sum(d in "02468" for d in s)
        return int("".join(map(str, (len(s), e, len(s)-e))))
    print([a(n) for n in range(52)]) # Michael S. Branicky, Jun 15 2021

Extensions

More terms from R. J. Mathar, Oct 15 2010
a(0) added by N. J. A. Sloane, May 12 2019

A100961 For a decimal string s, let f(s) = decimal string ijk, where i = number of even digits in s, j = number of odd digits in s, k=i+j (see A171797). Start with s = decimal expansion of n; a(n) = number of applications of f needed to reach the string 123.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 1, 2, 1, 2
Offset: 0

Views

Author

N. J. A. Sloane, Jun 17 2005

Keywords

Comments

Obviously if the digits of m and n have the same parity then a(m) = a(n). E.g. a(334) = a(110). In other words, a(n) = a(A065031(n)).
It is easy to show that (i) the trajectory of every number under f eventually reaches 123 (if s has more than three digits then f(s) has fewer digits than s) and (ii) since each string ijk has only finitely many preimages, a(n) is unbounded.

Examples

			n=0: s=0 -> f(s) = 101 -> f(f(s)) = 123, stop, a(0) = 2.
n=1: s=1 => f(s) = 011 -> f(f(s)) = 123, stop, f(1) = 2.
		

Crossrefs

A073054 gives another version. f(n) is (essentially) A171797 or A073053.

Extensions

More terms from Zak Seidov, Jun 18 2005

A308003 A modified Sisyphus function: a(n) = concatenation of (number of even digits in n) (number of digits in n) (number of odd digits in n).

Original entry on oeis.org

110, 11, 110, 11, 110, 11, 110, 11, 110, 11, 121, 22, 121, 22, 121, 22, 121, 22, 121, 22, 220, 121, 220, 121, 220, 121, 220, 121, 220, 121, 121, 22, 121, 22, 121, 22, 121, 22, 121, 22, 220, 121, 220, 121, 220, 121, 220, 121, 220, 121, 121, 22, 121, 22, 121
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2019

Keywords

Comments

If we start with n and repeatedly apply the map i -> a(i), we eventually reach 132 (see A073054).

Examples

			11 has 2 digits, both odd, so a(11)=22 (leading zeros are omitted).
12 has 2 digits, one even and one odd, so a(12)=121. Then a(121) = 132.
		

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.

Crossrefs

A073054 gives steps to reach 132.

Programs

  • Maple
    # Maple code based on R. J. Mathar's code for A171797:
    nevenDgs := proc(n) local a, d; a := 0 ; for d in convert(n,base,10) do if type(d,'even') then a :=a +1 ; end if; end do; a ; end proc:
    cat2 := proc(a,b) local ndigsb; ndigsb := max(ilog10(b)+1,1) ; a*10^ndigsb+b ; end:
    catL := proc(L) local a, i; a := op(1,L) ; for i from 2 to nops(L) do a := cat2(a,op(i,L)) ; end do; a; end proc:
    A055642 := proc(n) max(1,ilog10(n)+1) ; end proc:
    A308003 := proc(n) local n1,n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n2,n1,n1-n2]) ; end proc:
    seq(A308003(n),n=0..80) ;
  • Python
    def a(n):
        s = str(n)
        e = sum(1 for c in s if c in "02468")
        return int(str(e) + str(len(s)) + str(len(s)-e))
    print([a(n) for n in range(55)]) # Michael S. Branicky, Mar 29 2022
Showing 1-10 of 16 results. Next