cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A073053 Apply DENEAT operator (or the Sisyphus function) to n.

Original entry on oeis.org

101, 11, 101, 11, 101, 11, 101, 11, 101, 11, 112, 22, 112, 22, 112, 22, 112, 22, 112, 22, 202, 112, 202, 112, 202, 112, 202, 112, 202, 112, 112, 22, 112, 22, 112, 22, 112, 22, 112, 22, 202, 112, 202, 112, 202, 112, 202, 112, 202, 112, 112, 22, 112, 22
Offset: 0

Views

Author

Michael Joseph Halm, Aug 16 2002

Keywords

Comments

DENEAT(n): concatenate number of even digits in n, number of odd digits and total number of digits. E.g., 25 -> 1.1.2 = 112 (Digits: Even, Not Even, And Total). Leading zeros are then omitted.
This is also known as the Sisyphus function. - N. J. A. Sloane, Jun 25 2018
Repeated application of the DENEAT operator reduces all numbers to 123. This is easy to prove. Compare A073054, A100961. - N. J. A. Sloane Jun 18 2005

Examples

			a(1) = 0.1.1 -> 11.
a(10000000000) = 10111 because 10000000000 has 10 even digits, 1 odd digit and 11 total digits
		

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.
  • M. Ecker, Caution: Black Holes at Work, New Scientist (Dec. 1992)
  • M. J. Halm, Blackholing, Mpossibilities 69, (Jan 01 1999), p. 2.
  • J. Schram, The Sisyphus string, J. Rec. Math., 19:1 (1987), 43-44.
  • M. Zeger, Fatal attraction, Mathematics and Computer Education, 27:2 (1993), 118-123.

Crossrefs

Programs

  • Maple
    read("transforms") :
    A073053 := proc(n)
        local e,o,L ;
        if n = 0 then
            0 ;
        else
            e := A196563(n) ;
            o := A196564(n) ;
            L := [e,o,e+o] ;
            digcatL(L) ;
        end if;
    end proc: # R. J. Mathar, Jul 13 2012
    # Maple code based on R. J. Mathar's code for A171797, added by N. J. A. Sloane, May 12 2019 (Start)
    nevenDgs := proc(n) local a, d; a := 0 ; for d in convert(n, base, 10) do if type(d, 'even') then a :=a +1 ; end if; end do; a ; end proc:
    cat2 := proc(a, b) local ndigsb; ndigsb := max(ilog10(b)+1, 1) ; a*10^ndigsb+b ; end:
    catL := proc(L) local a, i; a := op(1, L) ; for i from 2 to nops(L) do a := cat2(a, op(i, L)) ; end do; a; end proc:
    A055642 := proc(n) max(1, ilog10(n)+1) ; end proc:
    A171797 := proc(n) local n1, n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n1, n2, n1-n2]) ; end proc:
    A073053 := proc(n) local n1, n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n2, n1-n2, n1]) ; end proc:
    seq(A073053(n), n=1..80) ; (End)
    L:=proc(n) if n=0 then 1 else floor(evalf(log(n)/log(10)))+1; fi; end;
    S:=proc(n) local Le,Ld,Lt,t1,e,d,t; global L;
    t1:=convert(n,base,10); e:=0; d:=0; t:=nops(t1);
    for i from 1 to t do if (t1[i] mod 2) = 0 then e:=e+1; else d:=d+1; fi; od:
    Le:=L(e); Ld:=L(d); Lt:=L(t);
    if e=0 then 10^Lt*d+t
    elif d=0 then 10^(Ld+Lt)*e+10^Lt*d+t
    else 10^(Ld+Lt)*e+10^Lt*d+t; fi;
    end;
    [seq(S(n),n=1..200)]; # N. J. A. Sloane, Jun 25 2018
    # alternative Maple program:
    a:= n-> (l-> (e-> parse(cat(e, (h-> [h-e, h][])(nops(l))))
        )(nops(select(x-> x::even, l))))(convert(n, base, 10)):
    seq(a(n), n=0..200);  # Alois P. Heinz, Jan 21 2022
  • Mathematica
    f[n_] := Block[{id = IntegerDigits[n]}, FromDigits[ Join[ IntegerDigits[ Length[ Select[id, EvenQ[ # ] &]]], IntegerDigits[ Length[ Select[id, OddQ[ # ] &]]], IntegerDigits[ Length[ id]] ]]]; Table[ f[n], {n, 0, 55}] (* Robert G. Wilson v, Jun 09 2005 *)
    s={};Do[id=IntegerDigits[n];ev=Select[id, EvenQ];ne=Select[id, OddQ];fd=FromDigits[{Length[ev], Length[ne], Length[id]}]; s=Append[s, fd], {n, 81}];SameQ[newA073053-s] (* Zak Seidov *)
    deneat[n_]:=Module[{idn=IntegerDigits[n]},FromDigits[Flatten[ IntegerDigits/@ {Count[ idn,?EvenQ],Count[ idn,?OddQ],Length[ idn]}]]] Array[ deneat,60,0]// Flatten (* Harvey P. Dale, Aug 13 2021 *)
  • Python
    def a(n):
        s = str(n)
        e = sum(1 for c in s if c in "02468")
        return int(str(e) + str(len(s)-e) + str(len(s)))
    print([a(n) for n in range(54)]) # Michael S. Branicky, Jan 21 2022

Extensions

Edited and corrected by Jason Earls and Robert G. Wilson v, Jun 03 2005
a(0) added by N. J. A. Sloane, May 12 2019

A171797 A modified Sisyphus function: a(n) = concatenation of (number of digits in n) (number of even digits) (number of odd digits).

Original entry on oeis.org

110, 101, 110, 101, 110, 101, 110, 101, 110, 101, 211, 202, 211, 202, 211, 202, 211, 202, 211, 202, 220, 211, 220, 211, 220, 211, 220, 211, 220, 211, 211, 202, 211, 202, 211, 202, 211, 202, 211, 202, 220, 211, 220, 211, 220, 211, 220, 211, 220, 211, 211, 202
Offset: 0

Views

Author

N. J. A. Sloane, Oct 15 2010

Keywords

Comments

Start with n, repeatedly apply the map i -> a(i). Then every number converges to 312. - Eric Angelini and Alexandre Wajnberg, Oct 15 2010

Examples

			11 has 2 digits, both odd, so a(11) = 202.
12 has 2 digits, one even and one odd, so a(12)=211. Then a(211) = 312.
		

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.

Crossrefs

Cf. A073053 (Sisyphus), A171798, A171813, A055642, A196563, A196564, A308002, A308003 (another version).
A100961 gives steps to reach 312.

Programs

  • Haskell
    a171797 n = read $ concatMap (show . ($ n))
                       [a055642, a196563, a196564] :: Integer
    -- Reinhard Zumkeller, Feb 22 2012, Oct 15 2010
    
  • Maple
    nevenDgs := proc(n) local a, d; a := 0 ; for d in convert(n,base,10) do if type(d,'even') then a :=a +1 ; end if; end do; a ; end proc:
    cat2 := proc(a,b) local ndigsb; ndigsb := max(ilog10(b)+1,1) ; a*10^ndigsb+b ; end:
    catL := proc(L) local a, i; a := op(1,L) ; for i from 2 to nops(L) do a := cat2(a,op(i,L)) ; end do; a; end proc:
    A055642 := proc(n) max(1,ilog10(n)+1) ; end proc:
    A171797 := proc(n) local n1,n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n1,n2,n1-n2]) ; end proc:
    seq(A171797(n),n=1..80) ; # R. J. Mathar, Oct 15 2010 and Oct 18 2010
  • Python
    def a(n):
        s = str(n); e = sum(d in "02468" for d in s)
        return int("".join(map(str, (len(s), e, len(s)-e))))
    print([a(n) for n in range(52)]) # Michael S. Branicky, Jun 15 2021

Extensions

More terms from R. J. Mathar, Oct 15 2010
a(0) added by N. J. A. Sloane, May 12 2019

A308002 a(n) = smallest nonnegative number that requires n applications of the modified Sisyphus function x -> A171797(x) to reach 312.

Original entry on oeis.org

312, 101, 0, 11, 10000000000111111111
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2019

Keywords

Comments

The next term, a(5), is 1 0^1000099 1^100010, a number with 1100110 digits, and is too large to display here.
a(n) = index of first n in A100961.

Examples

			0 -> 110 -> 312 reaches 312 in two steps, so a(2) = 0.
		

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.

Crossrefs

A073054 Number of applications of DENEAT operator x -> A073053(x) needed to transform n to 123.

Original entry on oeis.org

2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4
Offset: 0

Views

Author

Michael Joseph Halm, Aug 16 2002

Keywords

Comments

0 first occurs for n=123, 1 first occurs for n=101, 2 first occurs for n=0, 3 first occurs for n=20, 4 first occurs for n=11, 5 first occurs for n=1. What is the least n such that a(n) > 5? - Jason Earls, Jun 03 2005 (Corrected by N. J. A. Sloane, May 12 2019)
Since each string has only finitely many preimages under this map, the sequence is unbounded. Compare A100961. - N. J. A. Sloane, Jun 18 2005

References

  • M. Ecker, Caution: Black Holes at Work, New Scientist (Dec. 1992)
  • M. J. Halm, Blackholing, Mpossibilities 69, (1999), p. 2.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{id = IntegerDigits[n]}, FromDigits[ Join[ IntegerDigits[ Length[ Select[id, EvenQ[ # ] &]]], IntegerDigits[ Length[ Select[id, OddQ[ # ] &]]], IntegerDigits[ Length[ id]] ]]]; Table[ Length[ NestWhileList[f, n, UnsameQ, All]] - 2, {n, 0, 104}] (* Robert G. Wilson v, Jun 09 2005 *)

Extensions

Edited and corrected by Jason Earls and Robert G. Wilson v, Jun 03 2005
Offset corrected by N. J. A. Sloane, May 12 2019

A308004 a(n) = smallest nonnegative number that requires n applications of the Sisyphus function x -> A073053(x) to reach 123.

Original entry on oeis.org

123, 101, 0, 20, 11, 1
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2019

Keywords

Comments

a(n) = index of first n in A073054.
a(6) is currently unknown.

Examples

			0 -> 101 -> 123 reaches 123 in two steps, so a(2) = 0.
1 -> 11 -> 22 -> 202 -> 303 -> 123 reaches 123 in 5 steps, so a(5) = 1.
		

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.

Crossrefs

Programs

  • Mathematica
    id[n_]:=IntegerDigits[n]; il[n_]:=If[n!=0,IntegerLength[n],1]
    den[n_]:=FromDigits[{Length[Select[id[n],EvenQ]],Length[Select[id[n],OddQ]],il[n]}]; numD[n_]:=Length[FixedPointList[den,n]]-2;
    a308004[n_]:=Module[{k=0},While[numD[k]!=n,k++];k];
    a308004/@Range[0,5] (* Ivan N. Ianakiev, May 13 2019 *)
Showing 1-5 of 5 results.