A171798 a(n) = base-10 concatenation XYZ, where X = number of bits in binary expansion of n, Y = number of 0's, Z = number of 1's.
101, 211, 202, 321, 312, 312, 303, 431, 422, 422, 413, 422, 413, 413, 404, 541, 532, 532, 523, 532, 523, 523, 514, 532, 523, 523, 514, 523, 514, 514, 505, 651, 642, 642, 633, 642, 633, 633, 624, 642, 633, 633, 624, 633, 624, 624, 615, 642, 633, 633, 624
Offset: 1
Examples
14 = 1110 in base 2, so X=4, Y=1, Z=3, a(14)=413.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a171798 n = read $ concatMap (show . ($ n)) [a070939, a023416, a000120] :: Integer -- Reinhard Zumkeller, Feb 22 2012
-
Maple
# Maple code for trajectories of numbers from 1 to M: F:=proc(n) local s,t1,t2; t1:=convert(n,base,2); t2:=nops(t1); s:=add(t1[i],i=1..t2); parse(cat(t2,t2-s,s)); end; M:=16384; for n from 1 to M do t3:=F(n); sw:=-1; for i from 1 to 10 do if (t3 = 1147) or (t3 = 1165) or (t3 = 1019) or (t3 = 14311) then sw:=1; break; fi; t3:=F(t3); od; if sw < 0 then lprint(n); fi; od: Contribution from R. J. Mathar, Oct 15 2010: (Start) read("transforms") ; cat2 := proc(a,b) dgsb := max(1,ilog10(b)+1) ; a*10^dgsb+b ; end proc: catL := proc(L) local a; a := op(1,L) ; for i from 2 to nops(L) do a := cat2(a,op(i,L)) ; end do; a; end proc: A070939 := proc(n) max(1,ilog2(n)+1) ; end proc: A171798 := proc(n) local n1,n3 ; n1 := A070939(n) ; n3 := wt(n) ; catL([n1,n1-n3,n3]) ; end proc: seq(A171798(n),n=1..80) ; (End)
-
Mathematica
ans[n_]:=Module[{idn2=IntegerDigits[n,2]},FromDigits[{Length[idn2],Count[idn2,0],Count[idn2,1]}]]; Table[ans[i], {i, 50}] (* Harvey P. Dale, Nov 06 2010 *)
-
Python
def a(n): b = bin(n)[2:] z = b.count("0") return int(str(len(b)) + str(z) + str(len(b)-z)) print([a(n) for n in range(1, 52)]) # Michael S. Branicky, Mar 28 2022
Extensions
More terms from R. J. Mathar, Oct 15 2010
Comments