cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A171799 O.g.f.: Sum_{n>=0} 2^(n^2)*x^n/(1 - 2^n*x)^n.

Original entry on oeis.org

1, 2, 20, 648, 78608, 37949472, 74258600000, 589859028828288, 18957096840069579008, 2455889836782322072945152, 1278835681226410156250000000000, 2671465293024628033252951422140418048
Offset: 0

Views

Author

Paul D. Hanna, Jan 20 2010

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 20*x^2 + 648*x^3 + 78608*x^4 +...
A(x) = 1 + 2*x/(1-2*x) + 2^4*x^2/(1-2^2*x)^2 + 2^9*x^3/(1-2^3*x)^3 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,2^(m^2)*x^m/(1-2^m*x+x*O(x^n))^m),n)}
    
  • PARI
    {a(n)=if(n==0,1,2^n*(2^n+1)^(n-1))}

Formula

a(n) = 2^n*(2^n + 1)^(n-1) for n>0 with a(0)=1.

A171801 O.g.f.: Sum_{n>=0} (n+1)*2^(n^2)*x^n/(1 - 2^n*x)^n.

Original entry on oeis.org

1, 4, 56, 2448, 379168, 223096896, 514098000000, 4691436926959872, 170097530401558168064, 24520599890836361905701888, 14055963692387060312500000000000
Offset: 0

Views

Author

Paul D. Hanna, Jan 20 2010

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 56*x^2 + 2448*x^3 + 379168*x^4 +...
A(x) = 1 + 2*2*x/(1-2*x) + 3*2^4*x^2/(1-2^2*x)^2 + 4*2^9*x^3/(1-2^3*x)^3 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,(m+1)*2^(m^2)*x^m/(1-2^m*x+x*O(x^n))^m),n)}
    
  • PARI
    {a(n)=if(n==0,1,2^n*((n+1)*2^n + 2)*(2^n + 1)^(n-2))}

Formula

a(n) = 2^n * ((n+1)*2^n + 2) * (2^n + 1)^(n-2) for n>0 with a(0)=1.
Showing 1-2 of 2 results.