cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A171800 a(n) = ((n+1)*2^n + 1)*(2^n + 1)^(n-1).

Original entry on oeis.org

1, 5, 65, 2673, 397953, 228882753, 520970490625, 4723480504289025, 170687922720157732865, 24563695027660686202250241, 14068441356460459384918212890625, 32058887942708146080692278858371608577, 290694663888102785007861162394348756446314497
Offset: 0

Views

Author

Paul D. Hanna, Jan 20 2010

Keywords

Examples

			G.f.: A(x) = 1 + 5*x + 65*x^2 + 2673*x^3 + 397953*x^4 +...
A(x) = 1/(1-x) + 2*2*x/(1-2*x)^2 + 3*2^4*x^2/(1-2^2*x)^3 + 4*2^9*x^3/(1-2^3*x)^4 +...
		

Crossrefs

Programs

  • Mathematica
    Table[((n + 1)*2^n + 1)*(2^n + 1)^(n - 1), {n, 0, 15}] (* Wesley Ivan Hurt, Jan 19 2017 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,(m+1)*2^(m^2)*x^m/(1-2^m*x+x*O(x^n))^(m+1)),n)}
    
  • PARI
    {a(n)=n!*polcoeff(sum(k=0, n, (k+1)*2^(k^2)*exp(2^k*x)*x^k/k!), n)}
    
  • PARI
    {a(n)=((n+1)*2^n+1)*(2^n+1)^(n-1)}

Formula

O.G.f.: Sum_{n>=0} (n+1)*2^(n^2) * x^n/(1 - 2^n*x)^(n+1).
E.g.f.: Sum_{n>=0} (n+1)*2^(n^2) * exp(2^n*x) * x^n/n!.

A171801 O.g.f.: Sum_{n>=0} (n+1)*2^(n^2)*x^n/(1 - 2^n*x)^n.

Original entry on oeis.org

1, 4, 56, 2448, 379168, 223096896, 514098000000, 4691436926959872, 170097530401558168064, 24520599890836361905701888, 14055963692387060312500000000000
Offset: 0

Views

Author

Paul D. Hanna, Jan 20 2010

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 56*x^2 + 2448*x^3 + 379168*x^4 +...
A(x) = 1 + 2*2*x/(1-2*x) + 3*2^4*x^2/(1-2^2*x)^2 + 4*2^9*x^3/(1-2^3*x)^3 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,(m+1)*2^(m^2)*x^m/(1-2^m*x+x*O(x^n))^m),n)}
    
  • PARI
    {a(n)=if(n==0,1,2^n*((n+1)*2^n + 2)*(2^n + 1)^(n-2))}

Formula

a(n) = 2^n * ((n+1)*2^n + 2) * (2^n + 1)^(n-2) for n>0 with a(0)=1.
Showing 1-2 of 2 results.