A171807 Emirps (A006567) p such that R(prime(p)) is prime.
37, 71, 157, 167, 199, 907, 953, 971, 991, 1151, 1193, 1213, 1223, 1231, 1237, 1279, 1283, 1381, 1429, 1471, 1499, 1523, 1583, 1597, 1601, 1619, 1669, 1811, 1831, 1867, 3299, 3343, 3347, 3371, 3373, 3391, 3463, 3467, 3469, 3527, 3541, 3719, 3767, 3803
Offset: 1
Examples
a(1) = 37 because 37 and R(37) = 73 are prime, as are prime(37) = 157 and R(prime(37)) = 751. a(2) = 71 because 71 and R(71) = 17 are prime, as are prime(71) = R(prime(71)) = 353 (which is not an emirp because the reversal is the same prime). a(3) = 157 because 157 and R(157) = 751 are prime, as are prime(157) = R(prime(157)) = 919 (which is not an emirp because the reversal is the same prime). a(4) = 167 because 167 and R(157) = 671 are prime, as are prime(167) = 991 and R(prime(167)) = 199. a(5) = 199 because 199 and (199) = 991 are prime, as are prime(199) = 1217 and R(1217)= prime(912) = 7121.
Programs
-
Mathematica
emQ[n_]:=Module[{idn=IntegerDigits[n],revidn},revidn=Reverse[idn];idn!= revidn && PrimeQ[FromDigits[revidn]] && PrimeQ[FromDigits[ Reverse[ IntegerDigits[ Prime[n]]]]]]; Select[Prime[Range[600]],emQ] (* Harvey P. Dale, Mar 01 2012 *)
Formula
Extensions
More terms from R. J. Mathar, Jan 25 2010