A171822 Triangle T(n,k) = binomial(2*n-k, k)*binomial(n+k, 2*k), read by rows.
1, 1, 1, 1, 9, 1, 1, 30, 30, 1, 1, 70, 225, 70, 1, 1, 135, 980, 980, 135, 1, 1, 231, 3150, 7056, 3150, 231, 1, 1, 364, 8316, 34650, 34650, 8316, 364, 1, 1, 540, 19110, 132132, 245025, 132132, 19110, 540, 1, 1, 765, 39600, 420420, 1288287, 1288287, 420420, 39600, 765, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 9, 1; 1, 30, 30, 1; 1, 70, 225, 70, 1; 1, 135, 980, 980, 135, 1; 1, 231, 3150, 7056, 3150, 231, 1; 1, 364, 8316, 34650, 34650, 8316, 364, 1; 1, 540, 19110, 132132, 245025, 132132, 19110, 540, 1; 1, 765, 39600, 420420, 1288287, 1288287, 420420, 39600, 765, 1; 1, 1045, 75735, 1166880, 5465460, 9018009, 5465460, 1166880, 75735, 1045, 1;
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Programs
-
Magma
[Binomial(2*n-k, k)*Binomial(n+k, 2*k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 22 2021
-
Mathematica
Table[Binomial[2*n-k, k]*Binomial[n+k, 2*k], {n,0,10}, {k,0,n}]//Flatten
-
Sage
flatten([[binomial(2*n-k, k)*binomial(n+k, 2*k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 22 2021
Formula
Sum_{k=0..n} T(n, k) = Hypergeometric 4F3([-n, -n, 1/2 -n, n+1], [1/2, 1, -2*n], 1) = A183160(n). - G. C. Greubel, Feb 22 2021
Extensions
Edited by G. C. Greubel, Feb 22 2021