cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171822 Triangle T(n,k) = binomial(2*n-k, k)*binomial(n+k, 2*k), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 30, 30, 1, 1, 70, 225, 70, 1, 1, 135, 980, 980, 135, 1, 1, 231, 3150, 7056, 3150, 231, 1, 1, 364, 8316, 34650, 34650, 8316, 364, 1, 1, 540, 19110, 132132, 245025, 132132, 19110, 540, 1, 1, 765, 39600, 420420, 1288287, 1288287, 420420, 39600, 765, 1
Offset: 0

Views

Author

Roger L. Bagula, Dec 19 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    9,     1;
  1,   30,    30,       1;
  1,   70,   225,      70,       1;
  1,  135,   980,     980,     135,       1;
  1,  231,  3150,    7056,    3150,     231,       1;
  1,  364,  8316,   34650,   34650,    8316,     364,       1;
  1,  540, 19110,  132132,  245025,  132132,   19110,     540,     1;
  1,  765, 39600,  420420, 1288287, 1288287,  420420,   39600,   765,    1;
  1, 1045, 75735, 1166880, 5465460, 9018009, 5465460, 1166880, 75735, 1045, 1;
		

Crossrefs

Programs

  • Magma
    [Binomial(2*n-k, k)*Binomial(n+k, 2*k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 22 2021
  • Mathematica
    Table[Binomial[2*n-k, k]*Binomial[n+k, 2*k], {n,0,10}, {k,0,n}]//Flatten
  • Sage
    flatten([[binomial(2*n-k, k)*binomial(n+k, 2*k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 22 2021
    

Formula

T(n, k) = binomial(2*n-k, k)*binomial(n+k, 2*k) = A054142(n, k)*A085478(n, k).
Sum_{k=0..n} T(n, k) = Hypergeometric 4F3([-n, -n, 1/2 -n, n+1], [1/2, 1, -2*n], 1) = A183160(n). - G. C. Greubel, Feb 22 2021

Extensions

Edited by G. C. Greubel, Feb 22 2021