A171824 Triangle T(n,k)= binomial(n + k,n) + binomial(2*n-k,n) read by rows.
2, 3, 3, 7, 6, 7, 21, 14, 14, 21, 71, 40, 30, 40, 71, 253, 132, 77, 77, 132, 253, 925, 469, 238, 168, 238, 469, 925, 3433, 1724, 828, 450, 450, 828, 1724, 3433, 12871, 6444, 3048, 1452, 990, 1452, 3048, 6444, 12871, 48621, 24320, 11495, 5225, 2717, 2717, 5225, 11495, 24320, 48621
Offset: 0
Examples
Triangle begins as: 2; 3, 3; 7, 6, 7; 21, 14, 14, 21; 71, 40, 30, 40, 71; 253, 132, 77, 77, 132, 253; 925, 469, 238, 168, 238, 469, 925; 3433, 1724, 828, 450, 450, 828, 1724, 3433; 12871, 6444, 3048, 1452, 990, 1452, 3048, 6444, 12871; 48621, 24320, 11495, 5225, 2717, 2717, 5225, 11495, 24320, 48621; 184757, 92389, 43824, 19734, 9009, 6006, 9009, 19734, 43824, 92389, 184757;
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1325
Programs
-
Magma
T:= func< n,k | Binomial(n+k,n) + Binomial(2*n-k,n) >; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 29 2021
-
Mathematica
T[n_, k_] = Binomial[n+k, k] + Binomial[2*n-k, n-k]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
-
Sage
def T(n, k): return binomial(n+k,n) + binomial(2*n-k,n) flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 29 2021
Formula
Sum_{k=0..n} T(n,k) = binomial(2*n+2, n+1) = 2*A001700(n) = A000984(n+1). - G. C. Greubel, Apr 29 2021
Extensions
Formula and row sums reference added by the Assoc. Editors of the OEIS, Feb 24 2010