cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171824 Triangle T(n,k)= binomial(n + k,n) + binomial(2*n-k,n) read by rows.

Original entry on oeis.org

2, 3, 3, 7, 6, 7, 21, 14, 14, 21, 71, 40, 30, 40, 71, 253, 132, 77, 77, 132, 253, 925, 469, 238, 168, 238, 469, 925, 3433, 1724, 828, 450, 450, 828, 1724, 3433, 12871, 6444, 3048, 1452, 990, 1452, 3048, 6444, 12871, 48621, 24320, 11495, 5225, 2717, 2717, 5225, 11495, 24320, 48621
Offset: 0

Views

Author

Roger L. Bagula, Dec 19 2009

Keywords

Examples

			Triangle begins as:
       2;
       3,     3;
       7,     6,     7;
      21,    14,    14,    21;
      71,    40,    30,    40,   71;
     253,   132,    77,    77,  132,  253;
     925,   469,   238,   168,  238,  469, 925;
    3433,  1724,   828,   450,  450,  828, 1724,  3433;
   12871,  6444,  3048,  1452,  990, 1452, 3048,  6444, 12871;
   48621, 24320, 11495,  5225, 2717, 2717, 5225, 11495, 24320, 48621;
  184757, 92389, 43824, 19734, 9009, 6006, 9009, 19734, 43824, 92389, 184757;
		

Crossrefs

Row sums are A000984(n+1).

Programs

  • Magma
    T:= func< n,k | Binomial(n+k,n) + Binomial(2*n-k,n) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 29 2021
    
  • Mathematica
    T[n_, k_] = Binomial[n+k, k] + Binomial[2*n-k, n-k];
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
  • Sage
    def T(n, k): return binomial(n+k,n) + binomial(2*n-k,n)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 29 2021

Formula

T(n,k) = A046899(n,k) + A092392(n,k).
Sum_{k=0..n} T(n,k) = binomial(2*n+2, n+1) = 2*A001700(n) = A000984(n+1). - G. C. Greubel, Apr 29 2021

Extensions

Formula and row sums reference added by the Assoc. Editors of the OEIS, Feb 24 2010