A171886 Numbers n such that A008949(n) is a power of 2.
0, 1, 2, 3, 5, 6, 7, 9, 10, 14, 15, 17, 20, 21, 27, 28, 29, 31, 35, 36, 44, 45, 49, 54, 55, 65, 66, 71, 77, 78, 90, 91, 97, 104, 105, 119, 120, 121, 127, 135, 136, 152, 153, 161, 170, 171, 189, 190, 199, 209, 210, 230, 231, 241, 252, 253, 275, 276, 279, 287, 299
Offset: 1
Keywords
Examples
17 is in the sequence because A008949(17)=16, which in turn is because the first 3 elements of row 5 of Pascal's triangle, 1+5+10, add up to 16. 279 is in the sequence because the first 4 elements of row 24 of Pascal's triangle add up to 2^11: 1+23+253+1771=2048. 4097 is in the sequence because the first 3 elements of row 91 of Pascal's triangle add up to 2^12: 1 + 90 + 4005 = 4096. - _Reinhard Zumkeller_, Aug 08 2013
References
- M. R. Best, Perfect codes hardly exist. IEEE Trans. Inform. Theory 29 (1983), no. 3, 349-351.
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
- John Leech, ``Some Sphere Packings in Higher Space'', Can. J. Math., 16 (1964), page 669.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977.
- A. Tietavainen, On the nonexistence of perfect codes over finite fields. SIAM J. Appl. Math. 24 (1973), 88-96.
- J. H. van Lint, A survey of perfect codes. Rocky Mountain J. Math. 5 (1975), 199-224.
- J. H. van Lint, Recent results on perfect codes and related topics, in Combinatorics (Proc. NATO Advanced Study Inst., Breukelen, 1974), pp. 158-178. Math. Centre Tracts, No. 55, Math. Centrum, Amsterdam, 1974.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- John Leech, Some Sphere Packings in Higher Space (PDF available from the publisher).
Programs
-
Haskell
import Data.List (elemIndices) a171886 n = a171886_list !! (n-1) a171886_list = elemIndices 1 $ map a209229 $ concat a008949_tabl -- Reinhard Zumkeller, Aug 08 2013
Extensions
Edited by N. J. A. Sloane, Oct 18 2010
Offset changed by Reinhard Zumkeller, Aug 08 2013
Comments