cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A171971 Integer part of the area of an equilateral triangle with side length n.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 27, 35, 43, 52, 62, 73, 84, 97, 110, 125, 140, 156, 173, 190, 209, 229, 249, 270, 292, 315, 339, 364, 389, 416, 443, 471, 500, 530, 561, 592, 625, 658, 692, 727, 763, 800, 838, 876, 916, 956, 997, 1039, 1082, 1126, 1170, 1216, 1262, 1309
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 20 2010

Keywords

Comments

The Beatty sequence of sqrt(3)/4 starts 0, 0, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7,... for n>=1. This sequence here subsamples the Beatty sequence at the positions of the squares. - R. J. Mathar, Dec 02 2012

Crossrefs

Programs

Formula

a(n) = floor(n^2 * sqrt(3) / 4) = A308358(n^2).
a(n)*A171974(n)/3 <= A171973(n);
A171970(n)*A004526(n) <= a(n).

A171972 Greatest integer k such that k/n^2 < sqrt(3).

Original entry on oeis.org

0, 1, 6, 15, 27, 43, 62, 84, 110, 140, 173, 209, 249, 292, 339, 389, 443, 500, 561, 625, 692, 763, 838, 916, 997, 1082, 1170, 1262, 1357, 1456, 1558, 1664, 1773, 1886, 2002, 2121, 2244, 2371, 2501, 2634, 2771, 2911, 3055, 3202, 3353, 3507, 3665, 3826, 3990, 4158
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 20 2010

Keywords

Comments

Integer part of the surface area of a regular tetrahedron with edge length n.
A171970(n)*A005843(n) <= a(n);
a(n) <= 4*A171971(n); 0 <= a(n) - 4*A171971(n) < 4.

Crossrefs

Programs

  • Haskell
    a171972 = floor . (* sqrt 3) . fromInteger . a000290
    -- Reinhard Zumkeller, Dec 15 2012
  • Mathematica
    z = 120; r = Sqrt[3];
    Table[Floor[r*n^2], {n, 0, z}]; (* A171972 *)
    Table[Ceiling[r*n^2], {n, 0, z}]; (* A293410 *)
    Table[Round[r*n^2], {n, 0, z}]; (* A070169. -  Clark Kimberling, Oct 11 2017 *)

Formula

a(n) = floor(n^2 * sqrt(3)).
a(n) = A022838(n^2);
a(n) = A293410(n) - 1 for n > 0.

A171973 Integer part of the volume of a regular tetrahedron with edge length n.

Original entry on oeis.org

0, 0, 3, 7, 14, 25, 40, 60, 85, 117, 156, 203, 258, 323, 397, 482, 579, 687, 808, 942, 1091, 1254, 1433, 1629, 1841, 2071, 2319, 2587, 2874, 3181, 3510, 3861, 4235, 4632, 5052, 5498, 5969, 6466, 6990, 7542, 8122, 8731, 9369, 10039, 10739, 11471, 12235
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 20 2010

Keywords

Comments

Lim{n->oo} a(n)/A000292(n) = sqrt(2)/2;
floor(A171971(n)*A171974(n)/3) <= a(n).

Crossrefs

Programs

  • Haskell
    a171973 = floor . (/ 12) . (* sqrt 2) . fromInteger . a000578
    -- Reinhard Zumkeller, Dec 15 2012

Formula

a(n) = floor(n^3 * sqrt(2) / 12).

A171975 Integer part of the circumsphere radius of a regular tetrahedron with edge length n.

Original entry on oeis.org

0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 15, 16, 17, 17, 18, 18, 19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 30, 30, 31, 31, 32, 33, 33, 34, 34, 35, 36, 36, 37, 37, 38, 39, 39, 40, 41, 41, 42, 42, 43, 44, 44, 45, 45
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 20 2010

Keywords

Comments

-3 <= 4*a(n) - 3*A171974(n) < 3;
a(n)*A171974(n) <= A007590(n).

Crossrefs

Cf. A171973, A171972, A022840. Beatty sequence of A187110.

Programs

  • Haskell
    a171975 = floor . (/ 4) . (* sqrt 6) . fromInteger
    -- Reinhard Zumkeller, Dec 15 2012

Formula

a(n) = floor(n*sqrt(6)/4).

A325731 First term of n-th difference sequence of (floor(k*r)), r = sqrt(2/3), k >= 0.

Original entry on oeis.org

0, 1, -1, 1, -1, 0, 5, -20, 55, -125, 250, -450, 725, -1000, 1000, 1, -3642, 13278, -35344, 81720, -174098, 352716, -694904, 1355322, -2652200, 5245956, -10491911, 21097440, -42262518, 83482620, -161013975, 300338820, -536165400, 903201960, -1401448500
Offset: 1

Views

Author

Clark Kimberling, May 20 2019

Keywords

Crossrefs

Cf. A325664. Inverse binomial transform of A171974.

Programs

  • Mathematica
    Table[First[Differences[Table[Floor[Sqrt[2/3]*n], {n, 0, 50}], n]], {n, 1, 50}]
Showing 1-5 of 5 results.