cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171985 Number of partitions of 2*n-1 into parts not greater than n.

Original entry on oeis.org

1, 2, 5, 11, 23, 44, 82, 146, 252, 423, 695, 1116, 1763, 2738, 4192, 6334, 9459, 13968, 20425, 29588, 42496, 60547, 85628, 120246, 167762, 232605, 320635, 439544, 599412, 813360, 1098480, 1476870, 1977087, 2635869, 3500382, 4630932, 6104533, 8019131, 10499093
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 21 2010

Keywords

Comments

Central terms of the triangle in A026820: a(n)=A026820(2*n-1,n).

Examples

			a(4) = (partitions of 7 into parts <= 4) = #{4+3, 4+2+1, 4+1+1+1, 3+3+1, 3+2+2, 3+2+1+1, 3+1+1+1+1, 2+2+2+1, 2+2+1+1+1, 2+1+1+1+1+1, 1+1+1+1+1+1+1} = 11.
		

Programs

  • Maple
    g:= proc(n, i) option remember;
         `if`(n=0, 1, `if`(i>1, g(n, i-1), 0)+`if`(i>n, 0, g(n-i, i)))
        end:
    a:= n-> g(2*n-1, n):
    seq (a(n), n=1..40);  # Alois P. Heinz, Jul 18 2012
  • Mathematica
    g[n_, i_] := g[n, i] = If[n==0, 1, If[i>1, g[n, i-1], 0]+If[i>n, 0, g[n-i, i]]]; a[n_] := g[2*n-1, n]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)