A172003 Let y = y(u,v) be implicitly defined by g(u,v,y(u,v)) = 0. Read as a triangle by rows, the sequence represents the number of terms a(i,k-i) in the expansion of the bivariate divided difference [u_0,...,u_i; v_0,...,v_{k-i}]y in terms of trivariate divided differences of g.
1, 1, 3, 5, 3, 13, 33, 33, 13, 71, 245, 351, 245, 71, 441, 1921, 3597, 3597, 1921, 441, 2955, 15525, 35931, 46709, 35931, 15525, 2955, 20805, 127905, 352665, 563821, 563821, 352665, 127905, 20805, 151695, 1067925, 3417975, 6483285, 7963151
Offset: 1
Examples
The subsequences a(1,0),a(2,0),a(3,0),... and a(0,1),a(0,2),a(0,3),... coincide with the sequence A162326. For (m,n) = (1,1), one expresses [u_0,u_1;v_0,v_1]y as a sum of 5 terms, [01;01]y = - [0;0;(0,0),(1,0),(1,1)]g * [01;0;(1,0)]g * [1;01;(1,1)]g / ( [0;0;(0,0),(1,1)]g * [0;0;(0,0),(1,0)]g * [1;0;(1,0),(1,1)]g ) + [01;0;(1,0),(1,1)]g * [1;01;(1,1)]g / ( [0;0;(0,0),(1,1)]g * [1;0;(1,0),(1,1)]g ) - [01;01;(1,1)]g / [0;0;(0,0),(1,1)]g - [0;0;(0,0),(0,1),(1,1)]g * [0;01;(0,1)]g * [01;1;(1,1)]g / ( [0;0;(0,0),(1,1)]g * [0;0;(0,0),(0,1)]g * [0;1;(0,1),(1,1)]g ) + [0;01;(0,1),(1,1)]g * [01;1;(1,1)]g / ( [0;0;(0,0),(1,1)]g * [0;1;(0,1),(1,1)]g ), where the numbers refer to the indices of the corresponding variable, e.g. [1;01;(1,1)]g = [u_1;v_0,v_1;y(u_1,v_1)]g.
Crossrefs
Programs
-
Sage
R.
= PolynomialRing(ZZ,3) def P(n1,n2,q): E = cartesian_product([list(range(n1+1)), list(range(n2+1)), list(range(n1+n2+1))]) E = [(i1,i2,j) for (i1,i2,j) in E if (i1,i2,j) != (0,0,0) and (i1,i2,j) != (0,0,1) and i1 + i2 + j <= n1 + n2 and 2*(i1 + i2) + j - 1 <= 2*(n1+n2) - q] return R.sum(X1^s1 * X2^s2 * Y^(s1+s2+t-1) for s1,s2,t in E) n1, n2 = 4, 4 L = [[0 for _ in range(n1 + 1)]] * (n2 + 1) h = 1 + sum(((P(n1,n2,q))^q)/q for q in range(1,2*(n1+n2))) for k1 in range(n1+1): for k2 in range(k1+1): if (k1, k2) != (0, 0): print(k1, k2, h.coefficient({X1:k1, X2:k2, Y:k1+k2-1}))
Formula
Let E = N^3 \ {(0,0,0), (0,0,1)} be a set of triples of natural numbers. The number of terms a(m,n) is the coefficient of u^m * v^n * y^{m+n-1} of the generating function
- log(1 - Sum_{(r,s,t) in E} u^r * v^s * y^{r+s+t-1})
= Sum_{q >= 1} (Sum_{(r,s,t) in E} u^r * v^s * y^{r+s+t-1})^q / q.
Comments