cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172012 Expansion of (2-3*x)/(1-3*x-3*x^2) .

Original entry on oeis.org

2, 3, 15, 54, 207, 783, 2970, 11259, 42687, 161838, 613575, 2326239, 8819442, 33437043, 126769455, 480619494, 1822166847, 6908359023, 26191577610, 99299809899, 376474162527, 1427321917278, 5411388239415, 20516130470079, 77782556128482, 294896059795683
Offset: 0

Views

Author

Claudio Peruzzi (claudio.peruzzi(AT)gmail.com), Jan 22 2010

Keywords

Comments

The case k=3 in a family of sequences a(n) = L(k,n), L(k,n)=k*(L(k,n-1)+L(k,n-2)), L(k,0)=2 and L(k,1)=k.
The case k=1 is A000032 (classic Lucas sequence), k=2 is A080040, this here is essentially A085480.

Programs

  • Mathematica
    CoefficientList[Series[(2-3x)/(1-3x-3x^2),{x,0,30}],x] (* or *) LinearRecurrence[{3,3},{2,3},31] (* Harvey P. Dale, Aug 24 2011 *)

Formula

a(n) = 3*( a(n-1)+a(n-2) ) = 2*A030195(n+1)-3*A030195(n).
L(k,n) = c^n+b^n where c=(k+d)/2 ; b=(k-d)/2; d=sqrt(k*(k+4)) (Binet formula).
a(0)=2, a(1)=3, a(n) = 3*a(n-1)+3*a(n-2). [Harvey P. Dale, Aug 24 2011]
a(n) = [x^n] ( (1 + 3*x + sqrt(1 + 6*x + 21*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015

Extensions

Edited and extended by R. J. Mathar, Jan 23 2010