A172019 Numbers k such that 4 divides phi(k) (i.e., A000010(k)).
5, 8, 10, 12, 13, 15, 16, 17, 20, 21, 24, 25, 26, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 44, 45, 48, 50, 51, 52, 53, 55, 56, 57, 58, 60, 61, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101
Offset: 1
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Robert E. Dressler, A property of the phi and sigma_j functions, Compositio Mathematica, Vol. 31, No. 2 (1975), pp. 115-118.
Programs
-
Mathematica
Select[Range[200], Mod[EulerPhi[#], 4] == 0 &] (* Geoffrey Critzer, Nov 30 2014 *)
-
PARI
is(n)=my(o=valuation(n, 2), p); (o>1 || !isprimepower(n>>o, &p) || p%4<2) && n>4 \\ Charles R Greathouse IV, Mar 05 2013
Comments