cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A152680 a(n) = 4*A005098(n) = A002144(n) - 1.

Original entry on oeis.org

4, 12, 16, 28, 36, 40, 52, 60, 72, 88, 96, 100, 108, 112, 136, 148, 156, 172, 180, 192, 196, 228, 232, 240, 256, 268, 276, 280, 292, 312, 316, 336, 348, 352, 372, 388, 396, 400, 408, 420, 432, 448, 456, 460, 508, 520, 540, 556, 568, 576, 592, 600, 612, 616
Offset: 1

Views

Author

Artur Jasinski, Dec 10 2008

Keywords

Comments

If we take the 4 numbers 1, A002314(n), A152676(n), A152680(n) then the multiplication table modulo A002144(n) is isomorphic with the Latin square
1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1
and isomorphic with the multiplication table of {1,I,-I,-1} where I is sqrt(-1), A152680(n) is isomorphic with -1, A002314(n) with I or -I and A152676(n) vice versa -I or I.
1, A002314(n), A152676(n), A152680(n) are subfields of the Galois Field [A002144(n)].
Numbers n such that A172019(n) + 1 = primes - 1. - Giovanni Teofilatto, Feb 02 2010

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[If[Mod[Prime[n], 4] == 1, AppendTo[aa, Prime[n] - 1]], {n, 1, 200}]; aa

A353768 a(n) = phi(n) mod 4; Euler totient function reduced modulo 4.

Original entry on oeis.org

1, 1, 2, 2, 0, 2, 2, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2
Offset: 1

Views

Author

Antti Karttunen, May 15 2022

Keywords

Crossrefs

Cf. A000010, A010873, A066499 (positions of 2's), A172019 (of 0's).
Cf. also A074942, A261872, A084300, and also A105824.

Programs

  • PARI
    A353768(n) = (eulerphi(n)%4);

Formula

a(n) = A010873(A000010(n)).

A097987 Numbers k such that 4 does not divide phi(k), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 11, 14, 18, 19, 22, 23, 27, 31, 38, 43, 46, 47, 49, 54, 59, 62, 67, 71, 79, 81, 83, 86, 94, 98, 103, 107, 118, 121, 127, 131, 134, 139, 142, 151, 158, 162, 163, 166, 167, 179, 191, 199, 206, 211, 214, 223, 227, 239, 242, 243, 251, 254, 262, 263, 271
Offset: 1

Views

Author

Lekraj Beedassy, Sep 07 2004

Keywords

Comments

The asymptotic density of this sequence is 0 (Dressler, 1975). - Amiram Eldar, Jul 23 2020

Crossrefs

Essentially the same as A066499.
Cf. A000010.
Complement of A172019.

Programs

  • Mathematica
    Select[Range@275, ! Divisible[EulerPhi[#], 4] &] (* Ivan Neretin, Aug 24 2016 *)
  • PARI
    is(n)=my(o=valuation(n,2),p); (o<2 && isprimepower(n>>o,&p) && p%4>1) || n<5 \\ Charles R Greathouse IV, Feb 21 2013

Formula

a(n)=1, 2, 4, p^k, 2*p^k, with prime p == 3 (mod 4).

Extensions

Corrected and extended by Vladeta Jovovic, Sep 08 2004

A358043 Numbers k such that phi(k) is a multiple of 8.

Original entry on oeis.org

15, 16, 17, 20, 24, 30, 32, 34, 35, 39, 40, 41, 45, 48, 51, 52, 55, 56, 60, 64, 65, 68, 70, 72, 73, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 95, 96, 97, 100, 102, 104, 105, 110, 111, 112, 113, 115, 116, 117, 119, 120, 123, 128, 130, 132, 135, 136, 137, 140, 143
Offset: 1

Views

Author

DarĂ­o Clavijo, Oct 26 2022

Keywords

Crossrefs

Cf. A000010 (phi), A053574 (its 2-adic valuation), A037074 (a subsequence).
Totient multiples: A066498 (3), A172019 (4), A066500 (5), A066502 (7), A332512 (12).

Programs

  • Mathematica
    Select[Range[150], Divisible[EulerPhi[#], 8] &] (* Amiram Eldar, Oct 27 2022 *)
  • PARI
    isok(k) = Mod(eulerphi(k), 8) == 0; \\ Michel Marcus, Oct 27 2022
  • Python
    from sympy.ntheory import totient
    def isok(n): return totient(n) % 8 == 0
    

Formula

A000010(a(n)) == 0 (mod 8).
Showing 1-4 of 4 results.