cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172061 Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=4.

Original entry on oeis.org

1, 5, 22, 91, 367, 1461, 5776, 22748, 89402, 350974, 1377174, 5403193, 21201211, 83211277, 326703424, 1283211208, 5042294926, 19822108582, 77958648604, 306739666198, 1207433301046, 4754874514690, 18732340230592, 73827134976216
Offset: 0

Views

Author

Richard Choulet, Jan 24 2010

Keywords

Comments

This sequence is the 4th diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows: 1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,3,3,4,4,5,5,6,6,7,7, 1,2,4,6,9,12,16,20,25,30, 1,3,7,13,22,34,50,70,95. The MAPLE programs give the first diagonals of this array.
Apparently the number of peaks in all Dyck paths of semilength n+4 that are 2 steps higher than the preceding peak. - David Scambler, Apr 22 2013

Examples

			a(4) = C(12,4)-C(11,3)+C(10,2)-C(9,1)+C(8,0)=55*9-55*3+45-9+1=367.
		

Crossrefs

Cf. A091526 (k=-2), A072547 (k=-1), A026641 (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172062 (k=5), A172063 (k=6), A172064 (k=7), A172065 (k=8), A172066 (k=9), A172067 (k=10).

Programs

  • Magma
    k:=4; m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 16 2019
    
  • Maple
    a:= n-> add((-1)^(p)*binomial(2*n+4-p, n-p), p=0..n):
    seq(a(n), n=0..30);
    # second Maple program:
    gf:= (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^4:
    a:= n-> coeff(series(gf, z, n+10), z, n):
    seq(a(n), n=0..30);
  • Mathematica
    CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^4, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2014 *)
  • PARI
    k=4; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 16 2019
    
  • Sage
    k=4; ((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Feb 16 2019

Formula

G.f.: (2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k with k=4.
a(n) = Sum_{p=0..n} (-1)^(p)*binomial(2*n+k-p, n-p), with k=4.
a(n) ~ 2^(2*n+5)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 19 2014
D-finite with recurrence: +2*(n+4)*a(n) +(-13*n-36)*a(n-1) +(15*n+16)*a(n-2) +(19*n+14)*a(n-3) +2*(2*n-1)*a(n-4)=0. - R. J. Mathar, Feb 21 2020