A172063 Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=6.
1, 7, 37, 174, 771, 3300, 13820, 57044, 233108, 945793, 3817351, 15347362, 61520899, 246052888, 982365976, 3916739872, 15599504614, 62076995998, 246866382826, 981218764540, 3898442536366, 15483778158792, 61482966826992
Offset: 0
Examples
a(4) = C(14,4) - C(13,3) + C(12,2) - C(11,1) + C(10,0) = 7*13*11 - 26*11 + 66 - 11 + 1 = 771.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Magma
k:=6; m:=30; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 17 2019 -
Maple
for k from 0 to 20 do for n from 0 to 40 do a(n):=sum('(-1)^(p)*binomial(2*n-p+k, n-p)', p=0..n): od:seq(a(n), n=0..40):od; # 2nd program for k from 0 to 40 do taylor((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k, z=0, 40+k):od;
-
Mathematica
CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^6, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2014 *)
-
PARI
k=6; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 17 2019
-
Sage
k=6; ((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Feb 17 2019
Formula
a(n) = Sum_{j=0..n} (-1)^j * binomial(2*n+k-j, n-j), with k=6.
a(n) ~ 2^(2*n+7)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 19 2014
Conjecture: 2*n*(n+6)*(n+3)*a(n) -(7*n^3+59*n^2+166*n+160)*a(n-1) -2*(2*n+5)*(n+4)*(n+2)*a(n-2)=0. - R. J. Mathar, Feb 19 2016
Comments