cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172065 Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=8.

Original entry on oeis.org

1, 9, 56, 297, 1444, 6656, 29618, 128603, 548591, 2309467, 9624964, 39799813, 163556776, 668796712, 2723729944, 11055878188, 44753742226, 180746332690, 728571706240, 2932018571370, 11783070278816, 47297147250204
Offset: 0

Views

Author

Richard Choulet, Jan 24 2010

Keywords

Comments

This sequence is the 8th diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows: 1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,3,3,4,4,5,5,6,6,7,7, 1,2,4,6,9,12,16,20,25,30, 1,3,7,13,22,34,50,70,95. The Maple programs give the first diagonals of this array.

Examples

			a(4) = C(16,4) - C(15,3) + C(14,2) - C(13,1) + C(12,0) = 20*91 - 35*13 + 91 - 13 + 1 = 1820 - 455 + 79 = 1444.
		

Crossrefs

Cf. A091526 (k=-2), A072547 (k=-1), A026641 (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172062 (k=5), A172063 (k=6), A172064 (k=7), A172066 (k=9), A172067 (k=10)

Programs

  • Magma
    k:=8; m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 17 2019
    
  • Maple
    a:= n-> add((-1)^(p)*binomial(2*n-p+8, n-p), p=0..n):
    seq(a(n), n=0..40);
    # 2nd program
    a:= n-> coeff(series((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))
            /(2*z))^8, z, n+20), z, n):
    seq(a(n), n=0..40);
  • Mathematica
    CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^8, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2014 *)
  • PARI
    k=8; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 17 2019
    
  • Sage
    k=8; m=30; a=((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k ).series(x, m+2).coefficients(x, sparse=False); a[0:m] # G. C. Greubel, Feb 17 2019

Formula

a(n) = Sum_{j=0..n} (-1)^j *binomial(2*n+k-j, n-j), with k=8.
a(n) ~ 2^(2*n+9)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 19 2014
Conjecture: 2*n*(n+8)*(3*n+13)*a(n) -(21*n^3 + 247*n^2 + 980*n + 1344)*a(n-1) - 2*(n+3)*(3*n+16)*(2*n+7)*a(n-2) = 0. - R. J. Mathar, Feb 29 2016